Abstract:
The present disclosure relates to a pesticide formulation containing an insect-pathogenic microorganism and a method of manufacturing the same, and more particularly to a granular or powder pesticide formulation containing an insect-pathogenic microorganism and a method of manufacturing the same. The granular pesticide formulation of the present disclosure includes (a) a porous carrier, (b) a medium infiltrated into pores in the porous carrier, and (c) an insect-pathogenic microorganism cultured in the medium. The pesticide formulation containing the insect-pathogenic microorganism according to the present disclosure has a superior insecticidal effect because the number of spores of the insect-pathogenic microorganism having insecticidal activity is significantly increased compared to existing formulations.
Abstract:
A control circuit for LED and an active bleeder thereof are provided. The control circuit comprises an LED driver and the active bleeder. The LED driver drives at least one LED and generates a current-sense signal. The current-sense signal is correlated to an LED current. The active bleeder comprises a bleeder circuit. The bleeder circuit is coupled to the LED driver to receive the current-sense signal and sinks a bleeding current in accordance with the current-sense signal for keeping the current flowing through the dimmer higher than the holding current.
Abstract:
An input voltage transfer apparatus for an LED lighting system is provided. The input voltage transfer apparatus includes a source voltage storage unit, a zero voltage switching unit, and a nonzero voltage switching unit. The source voltage storage unit stores a source voltage. The zero voltage switching unit turns on according to the source voltage stored in the source voltage storage unit when a zero voltage is inputted. The nonzero voltage switching unit turns on according to a current applied thereto through the zero voltage switching unit when a nonzero voltage is inputted. When the nonzero voltage switching unit is turned on, the source voltage storage unit discharges the stored source voltage.
Abstract:
A high-speed flat panel display having a long lifetime. Thin film transistors in a pixel portion having a plurality of pixels are contacted differently from thin film transistors in driving circuit portions for driving the pixels, thereby enhancing luminance uniformity and reducing power consumption. The thin film transistors each have a channel region and a body contact region for applying a predetermined voltage to the channel region. At least one thin film transistor in the pixel portion is a source-body contact thin film transistor having the body contact region connected to one of source and drain electrodes so that the predetermined voltage can be provided to the channel region. Each thin film transistor in the driving circuit portion is a gate-body contact thin film transistor having the body contact region connected to the gate electrode so that a predetermined voltage can be provided to the channel region.
Abstract:
A flat panel display with a black matrix and a fabrication method of the same. The flat panel display has an insulating substrate at the upper part of which a pixel electrode is equipped; an opaque conductive film formed on the front surface of the insulating substrate except at the pixel electrode; an insulating film equipped with a contact hole exposing a portion of the opaque conductive film; and a thin film transistor equipped with a gate electrode, and conductive patterns for source/drain electrodes connected to the opaque conductive film through the contact hole.
Abstract:
Provided are a touch screen and a method of operating the same. The touch screen includes a detecting part, a control part, and a tactile feedback part. The detecting part detects object's approach or contact. The control part receives a signal of the detecting part to output a feedback signal. The tactile feedback part receives the feedback signal of the control part to provide a tactile feedback to a contact position using a magnetic force. The tactile feedback uses the magnetic force of a magnetic dipole.
Abstract:
The inventive concept provides organic light emitting diodes and methods of fabricating the same. The method may include forming an insulating layer on a substrate, coating a metal ink on the insulating layer, thermally treating the substrate to permeate the metal ink into the insulating layer, thereby forming an assistant electrode layer the insulating layer and the metal ink embedded in the insulating layer, and sequentially forming a first electrode, an organic light emitting layer, a second electrode on the assistant electrode layer.
Abstract:
A composition for an organic dielectric, includes a compound represented by Formula 1 below; and a cross-linking agent, wherein, in Formula 1, R1 is any one of hydrogen, hydroxyl group, ester group, amide group, or alkyl group or alkoxy group of a carbon number of 1 to 12, R2 is selected from electrolytic functional groups, each of a and b is a positive integer, and the ratio of b to a (b/a) is larger than 0 and smaller than 99,
Abstract:
A high-speed flat panel display has thin film transistors in a pixel array portion in which a plurality of pixels are arranged and a driving circuit portion for driving the pixels of the pixel array portion, which have different resistance values than each other or have different geometric structures than each other. The flat panel display comprises a pixel array portion where a plurality of pixels are arranged, and a driving circuit portion for driving the pixels of the pixel array portion. The thin film transistors in the pixel array portion and the driving circuit portion have different resistance values in their gate regions or drain regions than each other, or have different geometric structures than each other. One thin film transistor has a zigzag shape in its gate region or drain region or has an offset region.
Abstract:
Ripple of an input voltage is used to modulate a switching operation frequency of a switch mode power supply. A sensing voltage corresponding to the input voltage is received, a current ripple that is proportional to a difference between a peak value of the sensing voltage and the sensing voltage is generated, and a modulation control signal that is variable by the current ripple is generated. A switching frequency is modulated using an oscillator signal that is variable by the modulation control signal, and reduces the output voltage ripple.