Abstract:
A method of growing non-polar m-plane III-nitride film, such as GaN, AlN, AlGaN or InGaN, wherein the non-polar m-plane III-nitride film is grown on a suitable substrate, such as an m-SiC, m-GaN, LiGaO2 or LiAlO2 substrate, using metalorganic chemical vapor deposition (MOCVD). The method includes performing a solvent clean and acid dip of the substrate to remove oxide from the surface, annealing the substrate, growing a nucleation layer, such as aluminum nitride (AlN), on the annealed substrate, and growing the non-polar m-plane III-nitride film on the nucleation layer using MOCVD.
Abstract:
A method of growing non-polar m-plane III-nitride film, such as GaN, AlN, AlGaN or InGaN, wherein the non-polar m-plane III-nitride film is grown on a suitable substrate, such as an m-SiC, m-GaN, LiGaO2 or LiAlO2 substrate, using metalorganic chemical vapor deposition (MOCVD). The method includes performing a solvent clean and acid dip of the substrate to remove oxide from the surface, annealing the substrate, growing a nucleation layer, such as aluminum nitride (AlN), on the annealed substrate, and growing the non-polar m-plane III-nitride film on the nucleation layer using MOCVD.
Abstract:
A method of growing non-polar m-plane III-nitride film, such as GaN, AlN, AlGaN or InGaN, wherein the non-polar m-plane III-nitride film is grown on a suitable substrate, such as an m-SiC, m-GaN, LiGaO2 or LiAlO2 substrate, using metalorganic chemical vapor deposition (MOCVD). The method includes performing a solvent clean and acid dip of the substrate to remove oxide from the surface, annealing the substrate, growing a nucleation layer, such as aluminum nitride (AlN), on the annealed substrate, and growing the non-polar m-plane III-nitride film on the nucleation layer using MOCVD.
Abstract:
A method of reducing threading dislocation densities in non-polar such as a-{11-20} plane and m-{1-100} plane or semi-polar such as {10-1n} plane III-Nitrides by employing lateral epitaxial overgrowth from sidewalls of etched template material through a patterned mask. The method includes depositing a patterned mask on a template material such as a non-polar or semi polar GaN template, etching the template material down to various depths through openings in the mask, and growing non-polar or semi-polar III-Nitride by coalescing laterally from the tops of the sidewalls before the vertically growing material from the trench bottoms reaches the tops of the sidewalls. The coalesced features grow through the openings of the mask, and grow laterally over the dielectric mask until a fully coalesced continuous film is achieved.
Abstract:
A method of reducing threading dislocation densities in non-polar such as a-{11-20} plane and m-{1-100} plane or semi-polar such as {10-1n} plane III-Nitrides by employing lateral epitaxial overgrowth from sidewalls of etched template material through a patterned mask. The method includes depositing a patterned mask on a template material such as a non-polar or semi polar GaN template, etching the template material down to various depths through openings in the mask, and growing non-polar or semi-polar III-Nitride by coalescing laterally from the tops of the sidewalls before the vertically growing material from the trench bottoms reaches the tops of the sidewalls. The coalesced features grow through the openings of the mask, and grow laterally over the dielectric mask until a fully coalesced continuous film is achieved.
Abstract:
A method of reducing threading dislocation densities in non-polar such as a-{11-20} plane and m-{1-100} plane or semi-polar such as {10-1n} plane III-Nitrides by employing lateral epitaxial overgrowth from sidewalls of etched template material through a patterned mask. The method includes depositing a patterned mask on a template material such as a non-polar or semi polar GaN template, etching the template material down to various depths through openings in the mask, and growing non-polar or semi-polar III-Nitride by coalescing laterally from the tops of the sidewalls before the vertically growing material from the trench bottoms reaches the tops of the sidewalls. The coalesced features grow through the openings of the mask, and grow laterally over the dielectric mask until a fully coalesced continuous film is achieved.
Abstract:
A method of reducing threading dislocation densities in non-polar such as a-{11-20} plane and m-{1-100} plane or semi-polar such as {10-1n} plane III-Nitrides by employing lateral epitaxial overgrowth from sidewalls of etched template material through a patterned mask. The method includes depositing a patterned mask on a template material such as a non-polar or semi polar GaN template, etching the template material down to various depths through openings in the mask, and growing non-polar or semi-polar III-Nitride by coalescing laterally from the tops of the sidewalls before the vertically growing material from the trench bottoms reaches the tops of the sidewalls. The coalesced features grow through the openings of the mask, and grow laterally over the dielectric mask until a fully coalesced continuous film is achieved.
Abstract:
A method of growing planar non-polar m-plane III-Nitride material, such as an m-plane gallium nitride (GaN) epitaxial layer, wherein the III-Nitride material is grown on a suitable substrate, such as an m-plane silicon carbide (m-SiC) substrate, using metalorganic chemical vapor deposition (MOCVD). The method includes performing a solvent clean and acid dip of the substrate to remove oxide from the surface, annealing the substrate, growing a nucleation layer such as an aluminum nitride (AlN) on the annealed substrate, and growing the non-polar m-plane III-Nitride epitaxial layer on the nucleation layer using MOCVD.