Abstract:
In certain embodiments, a lamp is provided with an arc envelope including a ceramic, an end member including a material different from the ceramic, and a compliant seal disposed between the end member and the arc envelope. The compliant seal includes a plurality of layers having different thermal expansion characteristics in an order of gradual change between the arc envelope and the end member.
Abstract:
A refractory composition comprising niobium and silicon is disclosed. The amount of silicon present is less than about 9 atom %, based on total atomic percent for the composition. A turbine engine component (e.g., a gas turbine) is also described herein. The component comprises an alloy of niobium and silicon, wherein the amount of silicon present is less than about 9 atom %.
Abstract:
An apparatus for incorporating an elemental component in gaseous form into a molten metal is described. The apparatus comprises a container for holding the molten metal; means for cooling the container; heating means for maintaining the metal in the molten state; and a canopy which covers the top of the container. The apparatus also includes at least one aperture through which a desired gaseous material can be fed from a gas source. A related method for incorporating an elemental component in gaseous form into a molten metal is also described. The method includes the step of providing the metal in a container apparatus as described above, and feeding the gaseous elemental component from a gas source into the container, while maintaining the metal in the molten state. Articles prepared by such a method are also disclosed, as well as niobium base composites which comprise niobium, silicon, and nitrogen.
Abstract:
A conductive element comprises a metal core and a coating, wherein the coating comprises at least one layer of aluminum, an aluminum alloy, an aluminide, silicon, a silicon alloy, a silicide, and combinations thereof, and wherein the at least one layer has a predetermined thickness. A method of making a conductive element comprises depositing a coating material on a metal core to form a coated metal core and heating the coated metal core to a predetermined temperature to form at least one layer of aluminum, an aluminum alloy, an aluminide, silicon, a silicon alloy, a silicide, and combinations thereof.
Abstract:
A lamp comprising an arc envelope and an end structure coupled to the arc envelope, and wherein the end structure comprises at least one opening adapted to support an arc electrode and to receive a dosing material into the arc envelope.
Abstract:
A turbine component comprises a substrate; and a crystalline coating disposed on a surface of the substrate, wherein the crystalline coating comprises tin and yttrium in an amount greater than or equal to about 0.05 atomic percent based upon the total coating. A method of making a turbine component comprises disposing a coating composition on a substrate, wherein the coating composition comprises tin and yttrium in an amount greater than or equal to about 0.1 atomic percent based upon the total coating composition. A crystalline coating comprises tin and yttrium in an amount greater than or equal to about 0.05 atomic percent based upon the total coating.
Abstract:
A method of molding an article comprises inserting a mandrel into the cavity of the mold; placing a niobium based refractory metal intermetallic composite powder into a cavity of a mold; consolidating the niobium based refractory metal intermetallic composite around the mandrel; and chemically removing the mandrel from the composite. In one embodiment, the molded article comprises a turbine component for use in a turbine system.
Abstract:
A focal track region of an x-ray anode in an example is electrochemically etched. In a further example, an x-ray anode comprises a thermally-compliant focal track region for impingement of electrons from an x-ray cathode to create an x-ray source. The thermally-compliant focal track region comprises a pattern of discrete relative expanses and gaps.
Abstract:
A conductive element including a core and a coating, wherein the core comprises a material selected from the group consisting of molybdenum, molybdenum alloys, rhenium, rhenium alloys, molybdenum-rhenium alloys, and combinations thereof, and wherein the coating comprises at least one material selected from the group consisting of aluminum, an aluminum alloy, silicon, a silicon alloy, chromium, a chromium alloy, and combinations of two or more thereof.
Abstract:
An electrically conducting cermet comprises at least one transition metal element dispersed in a matrix of at least one refractory oxide selected from the group consisting of yttria, alumina, garnet, magnesium aluminum oxide, and combinations; wherein an amount of the at least one transition metal element is less than 15 volume percent of the total volume of the cermet. A device comprises the aforementioned electrically conducting cermet.