摘要:
A method for determining the center (62) of a silicon wafer (54) on a wafer table (14) is provided. The method includes measuring silicon wafer data with a sensor (22). The silicon wafer data is received at a wafer center computing system (38). The coordinates of the wafer center (Xw,Yw) in a wafer table Cartesian coordinate system (72) are computed. The coordinates of the edge of the silicon wafer (54) are then determined from the wafer center coordinates (Xw,Yw).
摘要:
A method of blind assembly processing a wafer by pick and place equipment is described. This method includes determining the wafer diameter or radius and determining the bad die edge exclusive zone. This determined diameter or radius and the determined edge exclusive zone is used to make a black paper mask and place it over the wafer or to cut or saw away from the wafer the bad die edge exclusive zone. This enables the pick and place equipment to avoid the bad dies in the bad die edge exclusive zone.
摘要:
A tool and method is described to decide partial wafer sizes to process multiple random sizes of wafers in pick and place equipment for wafermap operation. The tool identifies the wafer and gets wafermap data. The position of one or more cutters is displayed. The position of the cutters relative to the wafer is displayed. The tool generates and displaying the results of the type of dies in each partial that would result from a cut according to said displayed position of the cutters.
摘要:
A semiconductor wafer is adapted to support partial wafer processing generally transparently to a facility capable of processing a full wafer. The wafer has provided thereon a plurality of semiconductor dice and a plurality of visible reference features. The reference features are positioned among the dice to support a predetermined partitioning of the wafer into partial wafers. The positioning of the reference features may render each partial wafer uniquely visually distinguishable from every other partial wafer. Each partial wafer may contain at least one of the reference features, with the position of each reference feature identified in accordance with a coordinate system of an electronic wafer map. The positioning of the reference features may provide a visual indication of where to cut the wafer to effect the partitioning.
摘要:
An improved method for pick and place equipment operation is provided by an improved method for identifying the reference die on a wafer. A recording of good die, partial die, mirror die, and partial mirror die information about the neighboring dies about the reference die is formed by recording step is performed by starting at the reference die and moving clockwise about the reference die one die at a time to form a stored neighborhood matrix. Searching and identifying the reference die on a wafer includes aligning the wafer table with a wafer thereon at the reference die location coordinates determined by the recording step and starting at this location moving the wafer table one die at a time about the aligned reference die recording the neighboring die or partial die as full good die, partial die, mirror die, or partial mirror die and comparing to the information about dies or partial dies neighboring said reference die to identify the reference die.
摘要:
In a method and system for fabricating a full wafer (600) having dies, an orientation marker (606), and a reference die (608), includes configuring a reticle pattern (602) that is configured by arranging the dies in an array having m rows and n columns, where the m rows start in a row adjacent to the orientation marker (606), and m and n are integers. The reticle pattern (602) is transferred to the full wafer (600) to sequentially form a portion of the dies. The transferring includes placing an inkless marker (620) in the form of one or more non-circuit dies between the n columns of adjacent reticle patterns. The reticle pattern (602) is repeatedly transferred to form a remaining portion of the dies to complete the full wafer (600). A wafer map for the full wafer (600) is stored, with the wafer map including a non-circuit bin containing data describing the inkless marker (620).
摘要:
In a method and system for fabricating a full wafer (600) having dies, an orientation marker (606), and a reference die (608), includes configuring a reticle pattern (602) that is configured by arranging the dies in an array having m rows and n columns, where the m rows start in a row adjacent to the orientation marker (606), and m and n are integers. The reticle pattern (602) is transferred to the full wafer (600) to sequentially form a portion of the dies. The transferring includes placing an inkless marker (620) in the form of one or more non-circuit dies between the n columns of adjacent reticle patterns. The reticle pattern (602) is repeatedly transferred to form a remaining portion of the dies to complete the full wafer (600). A wafer map for the full wafer (600) is stored, with the wafer map including a non-circuit bin containing data describing the inkless marker (620).
摘要:
In a method and system for fabricating a full wafer (600) having dies, an orientation marker (606), and a reference die (608), includes configuring a reticle pattern (602) that is configured by arranging the dies in an array having m rows and n columns, where the m rows start in a row adjacent to the orientation marker (606), and m and n are integers. The reticle pattern (602) is transferred to the full wafer (600) to sequentially form a portion of the dies. The transferring includes placing an inkless marker (620) in the form of one or more non-circuit dies between the n columns of adjacent reticle patterns. The reticle pattern (602) is repeatedly transferred to form a remaining portion of the dies to complete the full wafer (600). A wafer map for the full wafer (600) is stored, with the wafer map including a non-circuit bin containing data describing the inkless marker (620).
摘要:
In a method and system for fabricating a full wafer (600) having dies, an orientation marker (606), and a reference die (608), includes configuring a reticle pattern (602) that is configured by arranging the dies in an array having m rows and n columns, where the m rows start in a row adjacent to the orientation marker (606), and m and n are integers. The reticle pattern (602) is transferred to the full wafer (600) to sequentially form a portion of the dies. The transferring includes placing an inkless marker (620) in the form of one or more non-circuit dies between the n columns of adjacent reticle patterns. The reticle pattern (602) is repeatedly transferred to form a remaining portion of the dies to complete the full wafer (600). A wafer map for the full wafer (600) is stored, with the wafer map including a non-circuit bin containing data describing the inkless marker (620).
摘要:
A method of processing a partial wafer in accordance with one embodiment comprises includes after of loading partial wafer into wafer table of pick and place equipment after saw; downloading wafer map data for the wafer from wafer map data host. If the partial wafer has a reference die then positioning the wafer table to the reference die and then moving the wafer table to the last column of the partial wafer. If the partial wafer does not have a reference die the last column (LCOLUMN) information is obtained from wafer map data header field in one embodiment and using LCOLUMN information remove all dies in the right side of partial wafer map. The wafer table is moved to pseudo reference die which is the first die in the bottom right. The pseudo reference die coordinate (x1, y1) is calculated where x1=first column from right to left that has a die in the wafer map data and y1=first bottom most row in the column x1 from the wafer map data. If this partial wafer is not the last partial wafer of this wafer, the wafer table is moved to the last left column (LCOLUMN) of the partial wafer. The LCOLUMN is set as complete if this is the last partial wafer and then the LCOLUMN is updated in the wafer map data header field in the original wafer map. The LCOLUMN information is used remove all dies from the wafer map data that are not part of this partial wafer. The LCOLUMN is updated in the wafer map data header field. The wafer map data file is saved for next partial wafer of the same wafer to process in the pick and place equipment and the then pick and place operation.