Abstract:
A multimedia system includes a data source for providing a multimedia data; a wireless transmitting module, coupled to the data source, comprising a wireless transmitter for transmitting the multimedia data; a wireless receiving module comprising a wireless receiver for receiving the multimedia data from the wireless transmitter; and a reproducing device, coupled to the wireless receiving module, for reproducing the multimedia data received by the wireless receiver.
Abstract:
A method for forming an integrated circuit is provided. The method includes forming a gate dielectric structure over a substrate. A titanium-containing sacrificial layer is formed, contacting the gate dielectric structure. The whole titanium-containing sacrificial layer is substantially removed.
Abstract:
A method of fabricating an implantable medical device that includes deforming and heating setting a polymer construct, for use in fabricating the device, in a temperature range in which the crystal nucleation rate is greater than the crystal growth rate is disclosed.
Abstract:
Methods and systems for manufacturing an implantable medical device, such as a stent, from a tube with desirable mechanical properties, such as improved circumferential strength and rigidity, are described herein. Improved circumferential strength and rigidity may be obtained by inducing molecular orientation in materials for use in manufacturing an implantable medical device. Methods of inducing circumferential molecular orientation by inducing circumferential flow in a molten polymer are disclosed.
Abstract:
Disclosed is an apparatus and method for determining a dwell time in a non-volatile memory circuit after a shutdown of the memory circuit. A voltage shift is calculated by comparing a first read level voltage required to read a test block stored before the shutdown and a second read level voltage required to read a second test block stored after the shutdown. A shutdown time is determined from a look up table indexed by the voltage shift and a number of program/erase cycles. The dwell time is calculated as a function of the drive temperature, a clock, and a block time stamp. Once the dwell time is calculated, a controller calculates a new read level voltage based, in part, on the dwell time and provides one or more programming commands representative of the new read level voltage to the memory circuit to read the memory circuit.
Abstract:
A security connection establishing method for a wireless device and a wireless host is disclosed. The security connection establishing method includes the steps of allowing the wireless device to generate a trigger signal, allowing the wireless host to receive the trigger signal, allowing the wireless host to generate an accepting signal according to the trigger signal, allowing the wireless device and the wireless host to directly establish a security connection according to the accepting signal, and providing a connection result.
Abstract:
A stent with a stent locking element and a method of securing a stent on a delivery implement, such as a catheter are disclosed. The locking element can include coupling elements capable of being releasably coupled to one another. The coupling elements may be adapted to inhibit shifting of the stent on the delivery implement. In some embodiments, the releasably coupled elements may secure the stent on the delivery implement.
Abstract:
A manufacturing method of a capacitor structure is provided, which includes the steps of: on a substrate having a first oxide layer, (a) forming a first suspension layer on the first oxide layer; (b) forming a first shallow trench into the first oxide layer above the substrate; (c) forming a second oxide layer filling the first shallow trench; (d) forming a second suspension layer on the second oxide layer; (e) forming a second shallow trench through the second suspension layer into the second oxide layer above the first suspension layer; (f) forming at least one deep trench on the bottom surface of the second shallow trench through the second and the first oxide layers, (g) forming an electrode layer on the inner surface of the deep trench; and (h) removing the first and second oxide layers through the trench openings in the first and the second suspension layers.