Abstract:
A method for surface roughening a metal work piece includes disposing a region of the workpiece to be roughened proximate to a counter electrode. The region of the workpiece to be roughened and the counter electrode are subsequently disposed together in an electrolyte. An electric potential with current flow is applied between the work piece and the counter electrode to roughen the metal surface to a desired roughness.
Abstract:
An apparatus and method for hybrid machining a workpiece is disclosed. The apparatus includes a mandrel for supporting the workpiece adjacent a cutter mounted on an arbor. A workpiece is powered as an anode and the cutter is powered as a cathode, and a cutting fluid or coolant is circulated therebetween. The cutter is made of a conductive material and a non-conductive abrasive material to maximize the amount of material removed from the workpiece. The coolant includes one or more additives to enhance the electrical discharge between the cutter and the workpiece. The cutter is moved relative to the workpiece to remove material from the workpiece at a predetermined depth of cut using an enhanced high-speed electro-erosion (HSEE) process in which both HSEE and abrasive machining processes are used. The workpiece may then be finish machined to a final shape of the titanium article, such as a dovetail of a turbine blade.
Abstract:
An apparatus and method for hybrid machining a workpiece is disclosed. The workpiece is powered as an anode, a cutter is powered as a cathode and a cutting fluid or coolant is circulated therebetween. The cutter is made of a conductive material and a non-conductive abrasive material. The hybrid machine performs a roughing pass machining operation in which material is removed from the workpiece at a relatively high rate using a high-speed electro-erosion (HSEE) process. Then, the hybrid machine performs a finish pass machining operation in which material is removed from the workpiece using precision electro-grinding (PEG) process at a different differential electrical potential and/or flushing rate than the roughing pass machining operation to provide a smooth finish without thermal effects on the workpiece.
Abstract:
An apparatus and method for hybrid machining a workpiece is disclosed. The workpiece is powered as an anode, a cutter is powered as a cathode and a cutting fluid or coolant is circulated therebetween. The cutter is made of a conductive material and a non-conductive abrasive material. The hybrid machine performs a roughing pass machining operation in which material is removed from the workpiece at a relatively high rate using a high-speed electro-erosion (HSEE) process. Then, the hybrid machine performs a finish pass machining operation in which material is removed from the workpiece using precision electro-grinding (PEG) process at a different differential electrical potential and/or flushing rate than the roughing pass machining operation to provide a smooth finish without thermal effects on the workpiece.
Abstract:
An electrochemical grinding electrode comprises an electrically conductive material; an arc resistance material; and an abrasive material different from the arc resistance material. An electrochemical grinding apparatus and a method are also presented.
Abstract:
A method of forming a pattern comprising a plurality of recesses within a turbine component is disclosed. The method includes simultaneously dissolving a plurality of portions of a selected section of the turbine component, thereby defining the plurality of recesses of the pattern.
Abstract:
A system for repairing a component is provided. The system includes an electrochemical machining unit and a tool delivery apparatus. The electrochemical machining unit includes an electrode, a power supply configured to energize the electrode and the component, and a machining solution source configured to pass a machining solution between the component and the electrode. The tool delivery apparatus includes a number of linkage elements pivotally connected and configured to carry the electrode. The tool delivery apparatus further includes an actuation element configured to actuate the linkage elements to move the electrode. A tool delivery apparatus and a method for repairing a component disposed within a case are also presented.
Abstract:
An electroerosion machining system comprises one or more electrodes configured to machine a workpiece, a power supply configured to energize the workpiece and the respective one or more electrodes, an electrolyte supply configured to pass an electrolyte, and a working apparatus configured to move the respective one or more electrodes relative to the workpiece. The electroerosion machining system further comprises a controller configured to control the working apparatus to machine the workpiece, and a removal agent configured to cooperate with the electrolyte from the electrolyte supply for removal of removed material from the workpiece. An electroerosion machining method is also presented.
Abstract:
A method for surface roughening a metal work piece includes disposing a region of the workpiece to be roughened proximate to a counter electrode. The region of the workpiece to be roughened and the counter electrode are subsequently disposed together in an electrolyte. An electric potential with current flow is applied between the work piece and the counter electrode to roughen the metal surface to a desired roughness.
Abstract:
A method for altering a dimension of an element made of an amorphous metallic material is provided. The method includes providing an anode comprising the amorphous metallic material, wherein the amorphous metallic material comprises at least two primary constituents, providing a cathode disposed in a spaced-apart relationship with the anode, providing an electrolyte in contact with the anode and the cathode, and applying an electrical potential between the anode and the cathode.