摘要:
The production and use of silicon microcolumn arrays that harvest light from a laser pulse to produce ions are described. The systems of the present invention seem to behave like a quasi-periodic antenna array with ion yields that show profound dependence on the plane of laser light polarization and the angle of incidence. By providing photonic ion sources, this enables enhanced control of ion production on a micro/nano scale and direct integration with miniaturized analytical devices.
摘要:
The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).
摘要:
The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation (LA) with electrospray ionization (ESI).
摘要:
The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).
摘要:
In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.
摘要:
The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).
摘要:
In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.
摘要:
A system and method for analyzing and imaging a sample containing molecules of interest combines modified MALDI mass spectrometer and SNOM devices and techniques and includes: (A) an atmospheric pressure or near-atmospheric pressure ionization region; (B) a sample holder for holding the sample; (C) a laser for illuminating said sample; (D) a mass spectrometer having at least one evacuated chamber; (E) an atmospheric pressure interface for connecting said ionization region and said mass spectrometer; (F) a scanning near-field optical microscopy instrument; (G) a recording device for recording topography and mass spectrum measurements made during scanning of the sample with the near-field probe; (H) a plotting device for plotting said topography and mass spectrum measurements as separate x-y mappings; and (I) an imaging device for providing images of the x-y mappings.
摘要:
The production and use of silicon microcolumn arrays that harvest light from a laser pulse to produce ions are described. The systems of the present invention seem to behave like a quasi-periodic antenna array with ion yields that show profound dependence on the plane of laser light polarization and the angle of incidence. By providing photonic ion sources, this enables enhanced control of ion production on a micro/nano scale and direct integration with miniaturized analytical devices.
摘要:
The production and use of silicon microcolumn arrays that harvest light from a laser pulse to produce ions are described. The systems of the present invention seem to behave like a quasi-periodic antenna array with ion yields that show profound dependence on the plane of laser light polarization and the angle of incidence. By providing photonic ion sources, this enables enhanced control of ion production on a micro/nano scale and direct integration with miniaturized analytical devices.