Metal-coated, polymer-encapsulated electronics modules and methods for making the same

    公开(公告)号:US12132010B2

    公开(公告)日:2024-10-29

    申请号:US17225508

    申请日:2021-04-08

    摘要: Presented are metal-coated, polymer-encapsulated power semiconductor modules, methods for making/using such power modules, and vehicles with traction power inverters containing such power modules. A power electronics assembly includes one or more power semiconductor modules packaged inside an assembly housing. Each power module includes a substrate, a semiconductor device mounted on the substrate, a polymeric encapsulant encasing therein the substrate and semiconductor device, and an electrical lead connected to the semiconductor device and projecting from the polymeric encapsulant. A metallic or ceramic coating is applied to select sections of the polymeric encapsulant's exposed exterior surface. The metallic/ceramic coating may be a single metallic layer that covers substantially all of the exposed surface area of the polymeric encapsulant's exterior surface. An optional hydrophobic polymer layer, passivated layer, and/or oxidized layer may cover the exterior surface of this metallic layer. Alternatively, another metallic layer or intercalated lamellar microstructures may cover the metallic layer.

    Multi-directional viewing camera system

    公开(公告)号:US12128826B2

    公开(公告)日:2024-10-29

    申请号:US17551600

    申请日:2021-12-15

    摘要: A multi-directional viewing camera system for a motor vehicle including a vehicle body defining an interior compartment and a body panel having an exterior surface and an interior surface facing the interior compartment. The camera system includes a mirror module for mounting to the body panel exterior surface. The mirror module is configured to capture and transmit incident light from at least one field of view (FOV) and has a polarizing beam splitter configured to reflect an s-polarized component and transmit a p-polarized component of the incident light in a visible spectral range. The camera system also includes a camera module having a video camera for mounting to the body panel interior surface. The camera module is configured to receive from the mirror module the s-polarized or the p-polarized component of the incident light and selectively display at least one FOV within the interior compartment.

    Methods and systems for access controlled spaces for data analytics and visualization

    公开(公告)号:US12111956B2

    公开(公告)日:2024-10-08

    申请号:US17748964

    申请日:2022-05-19

    发明人: Courtney Ewing

    摘要: Methods and systems for enabling organization and control of dashboards, visualizations, and other saved data objects into spaces. An exemplary method includes, based on at least one role of a user, controlling the user's access to a default space and to other spaces of a plurality of spaces, such that the only spaces that the user can access are the default space and the one or more other spaces. Each space can contain a number of saved objects such as dashboards, visualizations, or other objects. The method can provide a graphical user interface for enabling the user to select, as a current space, the default space or one of the other spaces; and in response to the selection, automatically saving new objects generated by the user into the current space; wherein each of the spaces is configured to provide access to certain data objects only or access to certain applications only.

    On-vehicle camera alignment monitoring system

    公开(公告)号:US12106518B2

    公开(公告)日:2024-10-01

    申请号:US17567371

    申请日:2022-01-03

    摘要: A system for on-vehicle camera alignment monitoring includes an on-vehicle camera in communication with a controller. The controller monitors vehicle operating parameters and camera signal parameters, and captures an image file from the on-vehicle camera. A first level analysis of the image file, the vehicle operating parameters, and the camera signal parameters is executed to detect dynamic conditions and image feature parameters that affect camera alignment. An error with one of the dynamic conditions or the image feature parameters that affects the camera alignment is detected. A second level analysis of the camera signal parameters is executed to identify a root cause indicating one of the dynamic conditions or the image feature parameters that affects the camera alignment based upon the error. A camera alignment-related fault is detected based upon the root cause, and vehicle operation is controlled based upon the camera alignment-related fault.