Abstract:
A method and an apparatus are described for producing a volume transmission hologram and/or a volume reflection hologram from a film (10) having a backing foil (12) and a holographic layer (14). In said method, the film (10) is guided over a drum (18), on which the film (10) is brought in contact with the master hologram (22). The master hologram (22) and the film (10) are simultaneously moved through an exposure zone (20). In the exposure zone (20), the film (10) and the master hologram (22) are irradiated with a linearly expanding exposure laser beam (32) in order to reproduce the master hologram (22) in the photopolymer layer (14). Both volume reflection and volume transmission holograms can be produced in the polymer layer (14) of the film (10) that is guided over the drum by means of only one drum (18). For this purpose, two master holograms (22, 22′) are or can be associated with the drum and are moved in synchrony therewith while lying thereon, the film (10) being located radially below the first master hologram (22) and/or radially above the second master hologram (22′).
Abstract:
A production method is provided by which a copied volume hologram from a multi-layer master is later customized by utilization of the color tuning properties of the light-curable materials used for the application onto personal documents. These holographic individual data, such as a passport photo, are also separately detectable, without the holographic elements copied from the master, that are visible under other viewing angles, impairing the visibility of the individual data. The volume hologram overlay obtained by this method is applied on personal and valuable documents to increase protection against forgery, possesses superimposed optically variable items of information that are separately visible under different viewing angles and give a defined color change under different view angles, wherein at least one of these items of optical information represents individual personal data, in particular a passport photograph.
Abstract:
When coating a document surface (3) having relief-like information (1) carrying personal data, for example, with a monomer-containing liquid UV adhesive (4) across the entire surface and then laminating thereon a volume hologram (2), the varying adhesive thicknesses between the volume hologram and the document surface resulting from the relief cause differentiated swelling and thereby a differentiated color shift of the hologram. After the desired color shift is achieved, the UV adhesive (4) is completely cured. In this way, individual holographic information is obtained, which is located exactly above the relief-like information of the document. With this method, holographic overlays comprising personal data and a passport picture can be produced, and it is possible to link defined optical document information to the hologram in an accurately positioned manner, so that information is visible both non-diffractively and, from a different viewing angle, holographically in a different color.
Abstract:
A multi-layer body includes a carrier film, a release layer, an embossed hologram layer, and a vapor-plated reflection layer. An adhesive layer is UV activated and includes a partially activated zone. Cured adhesive regions connect a transparent polycarbonate film and parts of the embossed hologram layer to one another inseparably. The cured adhesive regions are arranged about the periphery of an uncured adhesive region of the adhesive layer to form a frame around the uncured adhesive region. A forgery-proof document is produced using the multi-layer body. Uncured adhesive regions of the multi-layer body are partially cured with UV light through an information-carrying optical mask. The carrier film is removed together with the release layer and non-bonded embossed hologram layer regions. An upper protective film is applied to individualized embossed hologram layers and is hot pressed together with additional films.
Abstract:
The invention relates to a method for the individual application of a hot embossing film, according to which an adhesive is printed on a substrate in the form of symbols, patterns, numbers etc., then a hot embossing film consisting of a backing film, peel-off layer and decorative layer is hot-laminated on the printed substrate and the backing film is removed. The invention is characterized in that the substrate is a personal document (1), on which personal data, in particular a passport photograph (2) (in reverse) is printed using a digital printing method, the printing medium being a toner (8) or a dye that develops adhesive characteristics at laminating temperatures. A diffractive hot embossing film (3) that is devoid of an adhesive coating is hot-laminated on the printed personal document (1) and the backing film (4) is removed. Finally, an adhesive film (9) with an adhesive power
Abstract:
In a method for production of documents with a hologram and a document with a hologram, wherein, in a first step, a hologram is exposed in a photographic film and, in a second step, the photographic film is applied to a document support, the individualisation of the holograms first occurs during the gluing or after the gluing to the printed personal document or to the protective film provided for the surface protection of the document. It is thus possible to produce in a secure and economical fashion documents with individual holographic information of greater visibility and with further novel security features.
Abstract:
The invention relates to a method for the production of a multicolor hologram by means of a capture beam, wherein the utilized capture beam (6) has a plurality of beam bundles of the same wavelength. Advantageously, the multicolor hologram is produced by copying the structure of multiple single-color subholograms of a master hologram (1) in a copy layer (5) which is affixed parallel to the master hologram, by illuminating this copy layer with the single-color capture beam. Each beam bundle appears at a prespecified angle of incidence, wherein the angles of incidence are calculated in such a manner that the structure of a corresponding subhologram is produced in the copy layer. In this way, a falsification is nearly impossible.
Abstract:
The invention relates to a stop valve, the stop valve includes a valve body and a switch used for controlling the valve body's opening and closing, wherein, the stop valve also includes a locking structure which is used for locking the switch, the locking structure includes a locking part set on the valve body, and a locking unit set on the switch which fits the locking part, the locking unit connects with the locking part so that to lock the switch. Keep the stop valve in closed state by compressing the free end of the locking structure to force the locking end to clamp with the locking part so that locking the switch, prevent the stop valve opening accidentally caused by external force, and remove the safety hazard.
Abstract:
In a method for production of documents with a hologram and a document with a hologram, wherein, in a first step, a hologram is exposed in a photographic film and, in a second step, the photographic film is applied to a document support, the individualisation of the holograms first occurs during the gluing or after the gluing to the printed personal document or to the protective film provided for the surface protection of the document. It is thus possible to produce in a secure and economical fashion documents with individual holographic information of greater visibility and with further novel security features.
Abstract:
A method and an apparatus are described for producing a volume transmission hologram and/or a volume reflection hologram from a film (10) having a backing foil (12) and a holographic layer (14). In said method, the film (10) is guided over a drum (18), on which the film (10) is brought in contact with the master hologram (22). The master hologram (22) and the film (10) are simultaneously moved through an exposure zone (20). In the exposure zone (20), the film (10) and the master hologram (22) are irradiated with a linearly expanding exposure laser beam (32) in order to reproduce the master hologram (22) in the photopolymer layer (14). Both volume reflection and volume transmission holograms can be produced in the polymer layer (14) of the film (10) that is guided over the drum by means of only one drum (18). For this purpose, two master holograms (22, 22′) are or can be associated with the drum and are moved in synchrony therewith while lying thereon, the film (10) being located radially below the first master hologram (22) and/or radially above the second master hologram (22′).