Abstract:
A BLE location system and method are disclosed. The BLE system may provide accurate location of a BLE enabled object in a three dimensional space. The three dimensional space may be a building and the BLE system and method permits accurate location at a room, bay, and bed level in the three dimensional space to be determined. In some embodiments, the BLE system may determine if a BLE enabled object crosses a boundary and the boundary may be, for example, a boundary to a room, such as a door, a boundary to a space, such as a hallway or meeting area, or a boundary to a particular location identified by set of coordinates (X,Y or X,Y,Z for example). The determination of the boundary crossing of the BLE enabled object or the location of the BLE enabled object may be used for staff and patient locating and their associated workflows as well as high accuracy asset tracking in a hospital embodiment.
Abstract:
The present invention provides a solution to backhauling health information. The present invention utilizes a mesh network to backhaul the health information. The system includes a plurality of first tags, a mesh network, and an information engine. Each of the tags represents a first object. The mesh network preferably includes a plurality of plug-in sensors located within the facility. At least one node in the mesh network operates as healthcare device. The information engine is in communication with the mesh network and determines a position location of the healthcare device and an operation of the healthcare device.
Abstract:
The present invention provides a solution to mistaken location calculations based on multipath effects. The present invention utilizes tags attached to objects that transmit signals at various power levels for reception by sensors stationed throughout a facility. Sensor readings at the various power levels are utilized to determine the location of the tagged object.
Abstract:
The present invention provides a method and system to determining a near-field communication interaction in a wireless tracking mesh network. The present invention preferably utilizes near-field communication devices in conjunction with tracking tags to transmit signals for reception by sensors stationed throughout a facility which form a mesh network and forward the signals to an information engine for analysis.
Abstract:
Techniques for accurate position location and tracking suitable for a wide range of facilities in variable environments are disclosed. In one aspect, a system for position location comprises a plurality of sensors (e.g. a network monitor, an environment sensor) for generating measurements of a plurality of sources, a plurality of objects or tags, each object generating measurements of the plurality of sources, and a processor for receiving the measurements and generating a position location for one or more objects in accordance with the received measurements. In another aspect, a position engine comprises a mapped space of a physical environment, and a processor for updating the mapped space in response to received measurements. The position engine may receive second measurements from an object within the physical environment, and generate a position location estimate for the object from the received second measurements and the mapped space.
Abstract:
Techniques for accurate position location and tracking suitable for a wide range of facilities in variable environments are disclosed. In one aspect, a system for position location comprises a plurality of sensors (e.g. a network monitor, an environment sensor) for generating measurements of a plurality of sources, a plurality of objects or tags, each object generating measurements of the plurality of sources, and a processor for receiving the measurements and generating a position location for one or more objects in accordance with the received measurements. In another aspect, a position engine comprises a mapped space of a physical environment, and a processor for updating the mapped space in response to received measurements. The position engine may receive second measurements from an object within the physical environment, and generate a position location estimate for the object from the received second measurements and the mapped space.
Abstract:
The present invention provides a solution to mistaken location calculations based on multipath effects. The present invention utilizes tags attached to objects that transmit signals at various power levels for reception by sensors stationed throughout a facility. Sensor readings at the various power levels are utilized to determine the location of the tagged object.
Abstract:
A wireless tracking system and method for real-time location tracking of a extreme-temperature sterilizable object is disclosed herein. The system and method utilize a tag attached to the extreme-temperature sterilizable object which includes a housing, a processor, a temperature sensor and a transceiver. If an internal temperature of the tag is detected by the temperature sensor, the tag enters a sleep mode. The temperature sensor periodically activates to determine if the internal temperature of the tag is within an acceptable operating range.
Abstract:
A wireless tracking system and method with a tag removal detection feature is disclosed herein. The system and method utilize a tag attached to an asset which includes a processor, a motion sensor (such as an accelerometer), a transceiver, a tag removal sensor and a power source having a limited supply of power. The tag removal sensor is an optical sensor which is activated only when the motion sensor detects motion. In this manner, the tag conserves power since the tag is typically only in motion ten percent of the day. If the tag is removed from the asset, the optical sensor confirms the removal and an alert is activated by the system.
Abstract:
A plug-in network appliance is disclosed. In one aspect, a network appliance performs a bridge between two wireless communication formats. In another aspect, a network appliance is deployed to perform position location services. In another aspect, a mesh network comprising one or more network appliances is deployed. A mesh network comprising one or more network appliances may be deployed to perform position location services. A plug-in form factor is described. A network appliance may convert power received from a plug in a first format to power in a second format for powering various components. A network appliance may connect with a wireless network and/or a network connected through a plug. A plug-in network appliance may connect to a weight-bearing outlet. Various other aspects are also presented.