Abstract:
The invention relates to an adapter for bus bar systems with a base element (1, 8, 9, 10) equipped with attachment feet (8, 9, 10) to mount the base element onto the bus bars (11) in a mounting direction (B) perpendicular to the longitudinal direction (A) of the bus bars; with an automatic locking mechanism of the base element onto the bus bar system by means of a locking part (26) contained within the base element. In order to ensure a secure connection between the bus bar system and the adapter in the longitudinal direction of the respective bus bar, the invention suggests that the locking part provide a cutting-edge (27) positioned in the mounting direction to obtain an incisive engagement with one of the bus bars when mounting the base element.
Abstract:
A Manchester decoder blanks random transitions prior to the reception of a valid Manchester encoded signal. Specifically, the decoder according to the present invention comprises a data input, and edge detector, and a blanking device. The edge detector is used to detect edges in a signal which is received by the data input. Thus, in the event that edges are not detected at predetermined intervals (signifying that a valid signal is not being received), the blanking device blanks a data output of the decoder. Advantageously, the decoder circuit filters random transitions prior to the reception of a valid Manchester encoded signal, is of simple construction, and may be implemented in conjunction with a decoder circuit which is used to separate the Manchester encoded signal into its data and clock components.
Abstract:
A method of editing a real-time control program as it controls equipment is provided in which the editing occurs in a second area of memory and integrated into the pre-existing program by means of conditional jump instructions concatenated to that edited material. The pre-existing program is uninterrupted by the editing process except for a change of single instructions which do not affect the results of the execution but redirect the execution thread of that control program to be conditionally connected to the edited material. This single writing of single instructions, which do not affect execution results, precludes the possibility of the controller executing partially edited programs. The jump instructions are conditional on a test edit pointer to allow instantaneous implementation of the edits and a simple return to unedited instructions simply by changing the state of the flag.
Abstract:
A bus bar having reduced parasitic inductance and equal current path lengths. A bus bar of the present invention has a first plate connected to a collector of a first transistor, a collector of a second transistor, an emitter of a third transistor and an emitter of a fourth transistor; a second plate including a second plate input connected to a collector of the third transistor and a collector of the fourth transistor; a third plate including a third plate input connected to an emitter of the first transistor and an emitter of the second transistor; and a fourth plate which is connected to the first plate. The first plate, the second plate, and the third plate are disposed and arranged such that the lengths of the current paths from the fourth plate through the first transistor to the input of the third plate is equal to the length of the current path from the fourth plate through the second transistor to the input of the third plate. Similarly, the current path from the fourth plate through the third transistor to the input of the second plate is equal to the length of the current path from the fourth plate through the fourth transistor to the input of the second plate. A bus bar of the present invention has many advantages including reduced parasitic inductances, equal current path lengths, ease of construction, the ability to keep parallel transistor operating temperatures equal, and the inputs and output being located on the same side of the bus bar. Additionally, a method of increasing converter efficiency is disclosed. The method comprises providing equal length current paths and planar structures that reduce parasitic inductances and maintain equal current sharing and temperature characteristics.
Abstract:
A mounting for a solderable component module (SCM.TM.) interconnect module includes an elongated trench or blind via for receiving an edge of the module. The module may be a circuit board or other electrical device and preferably includes edge finger connectors. The elongated trench preferably includes hemicylinders located about the periphery. The hemicylinders provide plated through conductors for connecting to the finger connectors of the module. The trench is made according to an advantageous method in which the aperture is etched in order to remove barbs or extra copper material caused by milling the aperture. Preferably, the module fits into the trench with an interference or size-on-size fit. The trench may include strain relief areas. Additionally, the mounting can include apertures for receiving legs on the mounted board.
Abstract:
A transformer including a core; a concentric inner primary tube passing through the core and running up and over at least a portion of the core, the concentric inner primary tube defining a longitudinal axis within the core; and a concentric outer secondary tube passing through the core and running up and over the concentric inner primary tube, the concentric outer secondary tube defining a longitudinal axis within the core and being spaced apart from the concentric inner primary tube, the longitudinal axis of the concentric inner primary tube and the longitudinal axis of the concentric outer secondary tube being aligned with one another so as to be coaxial. The concentric outer secondary tube substantially encloses the concentric inner primary tube so as to provide a low impedance shield.
Abstract:
A method and apparatus for tuning an external velocity loop servo drive of the type including a controller, a command device, an external velocity servo amplifier, an actuator and a position feedback device. The tuning technique include the use of three unidirectional motion events of descending duration. In the first motion event the controller applies a control signal of known amplitude to the actuator and monitors the actuator velocity based upon the position feedback signals. The controller determines the actuator steady state velocity during the motion event and uses this value to determine a scaling factor for the servo amplifier. In a second motion event, the controller drives the actuator in acceleration and deceleration in response to a control signal of known amplitude. Based upon the times at which the actuator reaches certain anticipated velocities, the controller determines system dynamic characteristics. In a third motion event the controller pulses the actuator for a short interval and monitors the actuator velocity to determine the rise time in response to a control signal of known amplitude. The rise time is used to determine the velocity loop bandwidth. The velocity loop bandwidth is then used to tune the position loop gains to appropriate levels.
Abstract:
The present invention provides for electronic braking of DC brushless motors by developing a feedback signal based on the back EMF of the motor. This feedback signal is used to provide a signal to the motor permitting current flow from the motor into the controller of a controlled level to slow the motor down. Reliance on the back EMF of the motor eliminates the need for a commutation signal when an emergency stop is required.
Abstract:
A method and/or apparatus for altering command voltages when a modulation index is greater than unity in order to maintain the linear relationship between the fundamental component of phase voltage and the command voltage in PWM inverter or converter usage. The method and/or apparatus calculates and provides an in phase waveform to be added to the command voltage prior to comparison of the command voltage to a carrier signal, the sum of the waveform and command voltage producing a modified command voltage which maintains said linear relationship.
Abstract:
A multilayer circuit board or laminated circuit board for use in a motor controller is described. The multilayer circuit board is preferably utilized as a power substrate module. The power substrate module includes a mounting area provided in a recess, window or portion of the circuit board where the circuit board is only a single layer thick. The insulated mounting area is provided in a blind via in the multilayer circuit board. The single circuit board layer at the mounting area provides a heat conductive yet highly electrically insulated mounting area for receiving a heat sink. The heat sink can be mounted on a side opposite the electrical device. The heat sink may be standard heat sink or a copper coil directly soldered to the circuit board. The multilayer circuit board includes an enhanced conductive layer for receiving the surface mount device. The enhanced conductive layer preferably includes an insulative frame which holds copper slugs. The layers are advantageously thermally matched such that heat generated during operation is evenly dissipated by the mounting area and causes uniform expansion of all layers.