摘要:
An information sequence having a code length of N (N=K+M), where K is information length and M is parity length, is encoded into a code sequence by using an LDPC code. The LDPC code is generated based on a matrix H, with M rows and N columns. The matrix H includes a check matrix H2 and a check matrix H1 . The check matrix H2 has M rows and M columns, it is a cyclic permutation matrix, and an inverse matrix exists for the check matrix H2, and its column weight is 3. The check matrix H1 has M rows and K columns.
摘要翻译:具有码长N(N = K + M)的信息序列,其中K是信息长度,M是奇偶长度,通过使用LDPC码被编码成码序列。 基于具有M行和N列的矩阵H生成LDPC码。 矩阵H包括校验矩阵H2和校验矩阵H1。 校验矩阵H2具有M行和M列,它是循环置换矩阵,并且对于校验矩阵H2存在逆矩阵,并且其列权重为3.校验矩阵H1具有M行和K列。
摘要:
An apparatus and method for encoding low-density parity check (LDPC) codes. The method for generating a low-density parity check code formed of an information-part matrix and a parity-part matrix comprises the steps of converting the information-part matrix into an array code structure and assigning a degree sequence to each submatrix column; extending a dual-diagonal matrix corresponding to the parity-part matrix such that an offset value between diagonals has a random value; lifting the normalized dual-diagonal matrix; determining an offset value for cyclic column shift for each submatrix of the lifted normalized dual-diagonal matrix; and determining a parity symbol corresponding to a column of the parity-part matrix.
摘要:
Novel decoding approach is presented, by which, updated bit edge messages corresponding to a sub-matrix of an LDPC matrix are immediately employed for updating of the check edge messages corresponding to that sub-matrix without requiring storing the bit edge messages; also updated check edge messages corresponding to a sub-matrix of the LDPC matrix are immediately employed for updating of the bit edge messages corresponding to that sub-matrix without requiring storing the check edge messages. Using this approach, twice as many decoding iterations can be performed in a given time period when compared to a system that performs updating of all check edge messages for the entire LDPC matrix, then updating of all bit edge messages for the entire LDPC matrix, and so on. When performing this overlapping approach in conjunction with min-sum processing, significant memory savings can also be achieved.
摘要:
An information sequence having a code length of N (N=K+M), where K is information length and M is parity length, is encoded into a code sequence by using an LDPC code. The LDPC code is generated based on a matrix H, with M rows and N columns. The matrix H includes a check matrix H2 and a check matrix H1. The check matrix H2 has M rows and M columns, it is a cyclic permutation matrix, and an inverse matrix exists for the check matrix H2, and its column weight is 3. The check matrix H1 has M rows and K columns.
摘要:
A method for generating a parity check matrix of a block LDPC code is disclosed. The parity check matrix includes an information part corresponding to an information word and a first parity part and a second parity part each corresponding to a parity. The method includes determining a size of the parity check matrix based on a coding rate applied when coding the information word with the block LDPC code, and a codeword length; dividing a parity check matrix with the determined size into a predetermined number of blocks; classifying the blocks into blocks corresponding to the information part, blocks corresponding to the first parity part, and blocks corresponding to the second parity part; arranging permutation matrixes in predetermined blocks from among the blocks classified as the first parity part, and arranging identity matrixes in a full lower triangular form in predetermined blocks from among the blocks classified as the second parity part; and arranging the permutation matrixes in the blocks classified as the information part such that a minimum cycle length is maximized and weight values are irregular on a factor graph of the block LDPC code.
摘要:
A method for low-density parity-check (LDPC) encoding of data comprises defining a first MnullN parity check matrix; generating, based on the first parity check matrix, a second parity check matrix having an MnullM triangular sub-matrix; and, mapping the data into an LDPC code word based on the second parity check matrix. The method is particularly useful for data communications applications, but may also be employed in other applications such as, for example, data storage.