Abstract:
An improved circuit and method is described herein for extending the usable frequency range of a high performance, narrow band phase locked loop (PLL) device. For example, the improved circuit and method may perform a calibration sequence for calibrating an LC-type voltage controlled oscillator (VCO) immediately before or during operation of the PLL device. Unlike previous methods, the calibration sequence described herein provides a fast and convenient method for extending the usable frequency range of a PLL by shifting the center frequency of the LC-type VCO to a desired frequency. For example, the VCO center frequency may be incrementally shifted (e.g., either high or low) to compensate for the actual environmental conditions in which the PLL is used (i.e., to compensate for specific process, voltage, and temperature conditions). Once the calibration bits are set to the desired frequency, the calibration sequence is disabled, and the appropriate calibration bit values are applied to the VCO during normal operation of the PLL.
Abstract:
An aging compensation method for an oscillator circuit device, in which the oscillator circuit device receives a control voltage from an application end, and outputs a clock signal with a predetermined frequency in response to the control voltage, includes the steps of: a) inspecting the control voltage from the application end to obtain a first value thereof; b) after a predetermined time period has elapsed, inspecting the control voltage from the application end to obtain a second value thereof; c) determining whether there is a difference between the first and second values of the control voltage; d) if it is determined that there is a difference, performing compensation on the value of the control voltage based on the difference; and e) repeating steps b) through d).
Abstract:
In various embodiments, the invention provides a clock generator and/or a timing and frequency reference, with multiple operating modes, such power conservation, clock, reference, and pulsed modes. The various apparatus embodiments include a resonator adapted to provide a first signal having a resonant frequency; an amplifier; a temperature compensator adapted to modify the resonant frequency in response to temperature; and a process variation compensator adapted to modify the resonant frequency in response to fabrication process variation. In addition, the various embodiments may also include a frequency divider adapted to divide the first signal having the resonant frequency into a plurality of second signals having a corresponding plurality of frequencies substantially equal to or lower than the resonant frequency; and a frequency selector adapted to provide an output signal from the plurality of second signals. The output signal may be provided in any of various forms, such as differential or single-ended, and substantially square-wave or sinusoidal.
Abstract:
In various embodiments, the invention provides a clock generator and/or a timing and frequency reference, with multiple operating modes, such power conservation, clock, reference, and pulsed modes. The various apparatus embodiments include a resonator adapted to provide a first signal having a resonant frequency; an amplifier; a temperature compensator adapted to modify the resonant frequency in response to temperature; and a process variation compensator adapted to modify the resonant frequency in response to fabrication process variation. In addition, the various embodiments may also include a frequency divider adapted to divide the first signal having the resonant frequency into a plurality of second signals having a corresponding plurality of frequencies substantially equal to or lower than the resonant frequency; and a frequency selector adapted to provide an output signal from the plurality of second signals. The output signal may be provided in any of various forms, such as differential or single-ended, and substantially square-wave or sinusoidal.
Abstract:
An all-digital phase-locked loop is disclosed. The all-digital phase-locked loop includes a digitally controlled oscillator, a phase detector, a loop filter, and a bandwidth modification unit. The digitally controlled oscillator is controlled by an oscillator tuning word to generate a variable signal, wherein the oscillator tuning word includes a first tuning word and a second tuning word respectively to adjust the capacitance of a first capacitor set and the capacitance of a second capacitor set. The phase detector measures a phase error between the variable signal and a reference signal. The loop filter receives the phase error to generate an initial tuning word. The bandwidth modification unit receives the initial tuning word to adjust the initial tuning word to generate the tuning word according to the available usage range of the first capacitor set and the second capacitor set.
Abstract:
In a variable frequency oscillator in a semiconductor device, as the variation of an oscillation frequency caused by the variation of temperature and supply voltage and process variation is large, it is difficult to reduce the conversion ratio of control voltage dependent upon phase noise and the oscillation frequency and therefore, phase noise is large. The variation of the oscillation frequency is suppressed and phase noise is reduced by connecting a voltage-to-current conversion circuit that converts input control voltage to control current of a ring oscillator to the ring oscillator where delay circuits a delay time of which increases and decreases according to the amplitude of input control current are cascade-connected by a plurality of stages in a ring and increasing/decreasing current dependent upon any of temperature, supply voltage and the threshold voltage of a transistor inside the voltage-to-current conversion circuit.
Abstract:
Bias circuits to stabilize oscillation in ring oscillators, oscillators, and methods to stabilize oscillation in ring oscillators are provided. The ring oscillator includes a plurality of differential delay cells, each including a pair of input transistors, a pair of voltage-controlled resistors, and a common current source. The bias circuit includes a replica arm that includes a replica of one of the voltage-controlled resistors, and a resistor arm that includes a fixed resistor. The bias circuit supplies bias voltages to the differential delay cells such that ratio of voltage swing to bias current of the delay cell is kept constant by referring the ratio to the fixed resistor.
Abstract:
A voltage-controlled oscillator is provided that avoids use of any crystal resonator, or any resonator that is external to and not integrated upon the voltage-controlled oscillator monolithic substrate. The present oscillator can receive two or more parameters that would likely have an affect on the oscillator frequency, yet the oscillator includes compensating transfer functions that will remove, or correct for, that effect. Transfer functions involve electronic subsystems implemented in hardware or software that receive the input parameter that has changed from a nominal value, and will note the drift in output frequency, yet will compensate for that drift so that the output frequency remains near the nominal value. The voltage-controlled oscillator preferably is an LCVCO, and the transfer function outputs can be summed to take into account multiple parameter changes. In addition, the output frequency can be placed into a wider band spread spectrum output using a modulating, spread spectrum circuitry if desired.
Abstract:
In various embodiments, the invention provides a clock generator and/or a timing and frequency reference, with multiple operating modes, such power conservation, clock, reference, and pulsed modes. The various apparatus embodiments include a resonator adapted to provide a first signal having a resonant frequency; an amplifier; a temperature compensator adapted to modify the resonant frequency in response to temperature; and a process variation compensator adapted to modify the resonant frequency in response to fabrication process variation. In addition, the various embodiments may also include a frequency divider adapted to divide the first signal having the resonant frequency into a plurality of second signals having a corresponding plurality of frequencies substantially equal to or lower than the resonant frequency; and a frequency selector adapted to provide an output signal from the plurality of second signals. The output signal may be provided in any of various forms, such as differential or single-ended, and substantially square-wave or sinusoidal.
Abstract:
An output signal ZA of NAND 48a is given to a first input of NAND 48b and is given to a second input of the above NAND 48b, simultaneously through a delay circuit. Furthermore, an output signal ZB of the NAND 48b is given to the first input of NAND 48a and is given to the second input of NAND 48a, simultaneously through a delay circuit. The delay circuit includes a charging and discharging circuit consisting of a NMOS 42 having the conductivity controlled by a voltage VN depending on a temperature signal from a temperature-dependent current source 30 and a capacitor 44, and a NMOS 45 being turned on/off by the voltage of the above capacitor 44. By setting temperature characteristics of the voltage VN and temperature characteristics of the threshold voltage of the NMOS 45 so as to cancel each other, the oscillation frequency variation of the oscillation circuit consisting of astable multi-vibrators can be restrained.