Abstract:
Systems and methods disclosed provide a laser-assisted micro-mass spectrometer, which can include a pulsed inlet, a multi-wavelength laser system, and a first mass spectrometer module including a plurality of first ionization sources. In an embodiment, the pulsed inlet can be configured to receive a neutral sample of analyte material and provide it to said first mass spectrometer module.
Abstract:
A system and method comprising an ion production chamber having an ultra-violet light source disposed towards said chamber, a coated quartz plate between the chamber and the UV source whose coating absorbs incident UV light and ejects electrons into the chamber through the photoelectric effect, a harvest gas disposed to flow through the chamber from an inlet to an outlet, and a jet operable to introduce a sample into the harvest gas flow. In some embodiments the system includes using helium as the harvest gas. Certain embodiments include introducing a sample perpendicular to the harvest gas flow and using multiple sample introduction jets to increase mixing efficiency. In some embodiments the harvest gas and particle sample jet are one and the same. The charge sample may be coupled to a MEMS-based electrometer.
Abstract:
The invention relates to an ion source (50) for generating elemental ions and/or ionised metal oxides from aerosol particles, comprising: a reduced pressure chamber (61) having an inside; an inlet (56) and a flow restricting device (60) for inserting the aerosol particles in a dispersion comprising the aerosol particles dispersed in a gas, in particular in air, into the inside of the reduced pressure chamber (61), the inlet (60) fluidly coupling an outside of the reduced pressure chamber (61) via the flow restricting device (60) with the inside of the reduced pressure chamber (60); a laser (62) for inducing in a plasma region (63) in the inside of the reduced pressure chamber (61) a plasma in the dispersion for atomising and ionising the aerosol particles to elemental ions and/or ionised metal oxides; wherein the reduced pressure chamber (61) is adapted for achieving and maintaining in the inside of the reduced pressure chamber (61) a pressure in a range from 0.01 mbar to 100 mbar. The invention further relates to a method for generating elemental ions and/or ionised metal oxides from aerosol particles, comprising the steps of inserting aerosol particles in a dispersion comprising the aerosol particles dispersed in a gas, in particular in air, through an inlet (56) via a flow restricting device (60) into an inside of a reduced pressure chamber (61), while maintaining in the inside of the reduced pressure chamber (61) a pressure in a range from 0.01 mbar to 100 mbar, preferably from 0.1 mbar to 100 mbar or from 1 mbar to 100 mbar, particular preferably from 0.1 mbar to 50 mbar or from 1 mbar to 50 mbar, most preferably from 0.1 mbar to 40 mbar or from 1 mbar to 40 mbar; and inducing with a laser (62) in a plasma region (63) in the inside of the reduced pressure chamber (61) a plasma in the dispersion for atomising and ionising the aerosol particles to elemental ions and/or ionised metal oxides, wherein the laser (62) is adapted for inducing in the plasma region (63) in the inside of the reduced pressure chamber (61) the plasma in the gas of the dispersion for atomising and ionising the aerosol particles to elemental ions.
Abstract:
The invention proposes a mass spectrometry apparatus for ultraviolet light ionization of neutral lost molecules, and a method for operating same. The mass spectrometry apparatus for ultraviolet light ionization of neutral lost molecules includes a quadrupole tandem special linear ion trap mass analyzer, a vacuum ultraviolet lamp, a lamp front shutter, a gradient vacuum system and other necessary components for the mass spectrometry apparatus. In addition, the invention also proposes a method for operating the apparatus to efficiently store ions, fragment and analyze the ions, perform ultraviolet efficient ionization on lost neutral molecules, and then analyze the ions.
Abstract:
Disclosed herein are compositions for ionizing a target and methods for making the compositions. In some embodiments, the compositions can include a structured substrate having a plurality of upright surface features, for example, microscale or nanoscale pillars, in contact with an initiator. Also disclosed herein are methods for ionizing targets.
Abstract:
A system and method comprising an ion production chamber having an ultra-violet light source disposed towards said chamber, a coated quartz plate between the chamber and the UV source whose coating absorbs incident UV light and ejects electrons into the chamber through the photoelectric effect, a harvest gas disposed to flow through the chamber from an inlet to an outlet, and a jet operable to introduce a sample into the harvest gas flow. In some embodiments the system includes using helium as the harvest gas. Certain embodiments include introducing a sample perpendicular to the harvest gas flow and using multiple sample introduction jets to increase mixing efficiency. In some embodiments the harvest gas and particle sample jet are one and the same. The charge sample may be coupled to a MEMS-based electrometer.
Abstract:
A extreme ultraviolet (EUV) imaging spectrometer includes: a radiation source to: produce EUV radiation; subject a sample to the EUV radiation; photoionize a plurality of atoms of the sample; and form photoions from the atoms subject to photoionization by the EUV radiation, the photoions being field evaporated from the sample in response to the sample being subjected to the EUV radiation; and an ion detector to detect the photoions: as a function of a time-of-arrival of the photoions at the ion detector after the sample is subjected to the EUV radiation; or as a function of a position of the photoions at the ion detector.
Abstract:
A system and method comprising a charger for ionizing aerosols; a spectrometer coupled to the charger and operable to select for a predetermined particle size; a porous charge collector coupled to the spectrometer, and a MEMS electrometer. In some embodiments the charge collector may be a metal frit electrically coupled to the electrometer. The electrometer may include a comb drive actuator coupled to a moving shuttle supported on flexures.
Abstract:
This invention relates to the field of mass spectrometry, and more specifically to a vacuum ultraviolet photoionization and chemical ionization combined ion source, which consists of a vacuum ultraviolet light source and an ion source chamber. An ion acceleration electrode, an ion repulsion electrode, an ion extraction electrode, and a differential interface electrode positioned inside the ion source chamber are arranged along the exit direction of the vacuum ultraviolet light beam in sequence and spaced, coaxial, and parallel from each other. The ion acceleration electrode, the ion repulsion electrode, the ion extraction electrode, and the differential interface electrode are all plate structures with central through holes. The vacuum ultraviolet light beam passes through the central through holes of the electrodes along the axial direction. By utilizing a single vacuum ultraviolet light source, the ion source is feasible to switch between two ionization modes, vacuum ultraviolet photoionization (VUV PI) and chemical ionization (CI), under suitable ion source pressure, thus greatly expanding the range of detectable samples.
Abstract:
A sputter neutral particle mass spectrometry apparatus includes a sample table holding a sample which is a mass spectrometry target, an ion beam irradiation device which irradiates an ion beam on the sample held by the sample table to generate neutral particles in an adjacent region of the sample, a light beam irradiation device which irradiates a light beam on the neutral particles positioned in the adjacent region to obtain photoexcited ions, a draw-out electrode which draws out the photoexcited ions, a mass spectrometer which draws in the drawn out photoexcited ions to perform mass analysis, and an optical element which is provided in a light path after the light beam passes the adjacent region, and changes a traveling direction of the light beam so that the light beam passes the adjacent region again.