摘要:
A modular system and method for producing urea from bio-mass includes means and steps for “homogenizing” a biomass feedstock stream having components with different bulk density BTU content into a stream having a consistent bulk density BTU content. The steps include cleaning the incoming bio-mass feedstock stream to remove non-organic matter, blending the cleaned bio-mass feedstock stream to obtain a homogeneous blend having a consistent bulk density BTU content, and milling the homogeneous blend bio-mass feedstock stream to a predetermined size no greater than 12 mm.
摘要:
A reforming device according to the present invention has a compressor, a first heat exchanger, a desulfurization device, a reformer, a raw material gas branching line that extracts a compressed natural gas from a downstream side of the desulfurization device with respect to the flow direction of the natural gas and supplies the natural gas to the reformer, and a flue gas discharging line that discharges a flue gas generated in the reformer, wherein the first heat exchanger is provided in the flue gas discharging line, and the flue gas is used as a heating medium of the compressed natural gas.
摘要:
Oxycombustion systems and oxycombustion methods include thermally integrated ammonia synthesis. The oxycombustion systems may include an air separation unit that separates air into an oxygen stream and a nitrogen stream. An ammonia synthesis unit synthesizes ammonia from a hydrogen feed and the nitrogen stream to form a crude ammonia stream. An ammonia separation unit condenses the crude ammonia stream and separates the ammonia from any unreacted nitrogen and hydrogen to form a purified ammonia stream. An oxycombustion reactor combusts a fuel from a fuel feed stream in the presence of the oxygen stream from the air separation unit to generate hot water or steam. At least one thermal integration may be present in the oxycombustion systems and may be chosen from a reactor thermal linkage of the ammonia synthesis unit with the oxycombustion reactor, a separator thermal linkage of the air separation unit with the ammonia separation unit, or both.
摘要:
An ammonia-urea plant where purge gas stream (3) generated in the urea section is used as ammonia source for selective catalytic reduction of nitrogen oxides in combustion fumes (4) which are emitted by the ammonia section; a related process and a method for modification of an ammonia-urea plant are also disclosed.
摘要:
A method for producing ammonia from natural gas, fed to an autothermic reformer with an O2 rich gas. Crude synthesis gas is produced at temperatures of 900 to 1200null C., pressures of 40 to 100 bar and in the presence of a cracking catalyst. The crude synthesis gas is led through a catalytic conversion system to convert CO to H2, thereby obtaining a conversion synthesis gas with a H2 content of at least 55 vol.-% and a CO content of not more than 8 vol.-%. The conversion synthesis gas is subjected to a gas purification to remove CO2, CO and CH4, thereby producing an N2-H2 mixture that is subjected to a catalytic ammonia synthesis. The ammonia produced can at least be partially converted to urea by reacting it with CO2.
摘要:
A process for the combined production of ammonia and urea of the type comprising an ammonia synthesis reactor (2), a urea synthesis reactor (5) and a urea recovery section (21) stands out for the fact of submitting at least a part of a flow comprising carbamate in aqueous solution coming from the urea recovery section (21) to a partial decomposition treatment, to obtain a flow comprising ammonia and carbon dioxide in vapor phase and a flow comprising diluted carbamate in aqueous solution, which is fed together with a gas flow comprising hydrogen, nitrogen and carbon dioxide, preferably obtained by hydrocarbons steam reforming, and a flow comprising ammonia coming from the ammonia synthesis reactor (2) to a carbamate synthesis section (3), where ammonia and carbon dioxide are caused to react, to obtain a flow comprising carbamate in aqueous solution and a gas flow comprising hydrogen and nitrogen. The flow comprising carbamate in aqueous solution is then sent to the urea synthesis reactor (5), while the gas flow comprising hydrogen and nitrogen is sent to the ammonia synthesis reactor (2).
摘要:
An integrated ammonia urea process where the reaction of carbon dioxide and ammonia is in a urea reactor having a condensing section, a reaction section having more than one stage and a stripping section. The raw ammonia synthesis gas containing carbon dioxide is introduced into the stripping section of the urea reactor at a pressure selected within the range of 2000 and 3500 psig. The stripping effluent removed from the stripping section comprises the raw ammonia synthesis gas, carbon dioxide and ammonia which is introduced into a state of the reaction section.
摘要:
A method is disclosed for reusing the processing condensates in a combined plant for the production of ammonia and urea. The condensates are combined into a single stream, filtered to remove the solid substances in suspension, if any, and fed to a boiler for the production of steam while exploiting the sensible heat. Pollution of sewage waters is prevented while obtaining a considerable economy in the running costs.
摘要:
In an integrated or combined process for the production of ammonia and urea, the improvement consisting in that the absorption of CO.sub.2 from the raw gas going to the synthesis reactor for ammonia is carried out with an absorption apparatus which is divided into two sections, one being of the plate type and the other of the thin film type. The predominant fraction of CO.sub.2 is stripped in the thin-film section, the remainder in the adiabatic plate section.
摘要:
An integrated ammonia-urea process is disclosed which uses as the starting gas mixture a stream coming, for example, from steam reforming of hydrocarbons, carbon dioxide being stripped from the stream by the action of a very concentrated ammonia solution (above 70% by wt) first and the the action of an ammoniated solution of ammonium carbonate secondly, a solution of ammonium carbamate being obtained together with a gas stream composed of nitrogen and hydrogen; sending the carbamate solution to the urea reactor, discharging from the urea reactor the urea solution containing unconverted carbamate and excess ammonia, decomposing said carbamate and sending evolved ammonia to the urea reactor again along with carbon dioxide, discharging the urea solution having now 50% of the original carbamate to an adiabatic stripper in which the stripping gas is essentially composed of hydrogen and nitrogen, removing ammonia and carbon dioxide with water from the adiabatic stripper and condensing ammonia and carbon dioxide by heat exchange, sending the stream of hydrogen and nitrogen to methanization and ammonia synthesis and concentrating the urea solution directly until obtaining a urea melt.