Abstract:
A filtering device includes: a fluid-collecting tube; a plurality of positioning trays sleeved around the fluid-collecting tube and stacked one above the other; and a plurality of membranes alternating with the positioning trays. Each of the membranes is sandwiched between an adjacent pair of the positioning trays. Each of the positioning trays includes first and second engaging members. Each adjacent pair of the positioning trays are coupled to each other and are rotatable relative to each other between a first relative position and a second relative position. The first engaging member of each of the positioning trays is engageable with the second engaging member of an adjacent one of the positioning trays.
Abstract:
A reverse osmosis product water storage tank having first and second molded shells coupled together to form an enclosure, a bladder within the enclosure and coupled to separate product water from squeeze water within the enclosure, a first port through a wall of the enclosure to provide water access to the product water side of the bladder, a second port through a wall of the enclosure to provide squeeze water access to the squeeze water side of the bladder and wherein the inner surfaces of the enclosure having a topography configured to define a plurality of channels between the inner surfaces of the enclosure and the bladder when the bladder is full of product water for accommodating squeeze water flow into the enclosure between the enclosure and the bladder when the bladder is full of product water.
Abstract:
Reverse osmosis filtration systems that are self contained and easily converted from above the counter use to below the counter use. The systems feature a simple construction, including a two piece manifold assembly to which filters, including a reverse osmosis filter, a product water storage tank and a control valve connect, all without separate fasteners. The manifold assembly provides all water connections within the system, and includes connections to connect to a water supply, a drain, two dispensers and to an auxiliary water storage tank. The system pressurizes squeeze water for product water dispensing, providing maximum efficiency, maximum storage capacity for a given tank size and maximum pressure for dispensing product water. Various embodiments are disclosed.
Abstract:
A low priming volume integrated centrifugal pump and membrane oxygenator comprising a housing (10) containing a mass transfer bed (40) comprising gas permeable hollow membrane fibers (38) placed circumferentially in a ring around an impeller (30). The mass transfer bed (40) is formed by a multiple wrap of a fiber ribbon (42) comprising at least two layers of fibers (38) bonded in precise orientation with fibers in alternate layers positioned in line with the opening between fibers in the layers above and below. Adhesion means ensure precise orientation of the fibers (38). Priming volume is further reduced by a small impeller flow channel volume.
Abstract:
A low priming volume integrated centrifugal pump and membrane oxygenator comprising a housing containing a mass transfer bed comprising gas permeable hollow membrane fibers placed circumferentially in a ring around an impeller. The mass transfer bed is formed by a multiple wrap of a fiber ribbon comprising at least two layers of fibers bonded in precise orientation with fibers in alternate layers are positioned in line with the opening between fibers in the layers above and below. Adhesion means ensure precise orientation of the fibers. Priming volume is further reduced by a small impeller flow channel volume.
Abstract:
A retractor handle is attached to the retraction end of a core wound permeator or filter module for withdrawing the module form its containment housing without requiring special tools. The retraction handle can be a resin pull ring flexibly attached to a flange of a plug that closes the retraction end of the core of the permeator or filter module. The retraction handle can also be a wire pull ring having ends seated in sockets formed in a plugged end region of the core.
Abstract:
A tubular module employed for the separation, purification, concentration, etc., of a solution has a plurality of porous support tubes each containing semipermeable membranes which are arranged parallel in a plurality of stages, and which are fixed at both ends thereof by heads containing return bends so as to connect the porous support tubes into zigzags, and are also tightly fastened together by the centers of the heads by means of a single stay bolt. This tubular membrane module is characterized in that the end of the stay bolt does not extend through the head which is remote from the bolt, but ends within that head, and the return bends within the center of the head are bored so as to be further out than the end of the stay bolt to provide communication between the central tubes, so that the solution in the porous support tubes can be easily removed with no partial vacuum generated therein.
Abstract:
For filtering and separating liquid and gaseous media, particularly for water desalinization by reverse osmosis, modules filled with membrane cushions are employed that are open at two opposite sides and are inundated within an outer housing by an entering medium. The medium which enters into the interior of the membrane cushion is led away by means of aligned cushion holes and a conduit located in these holes. According to the invention, it is proposed that where there is a tandem series of several membrane cushion modules in a common housing, the stacked modules not be connected securely to one another and that a turbulence producing gap between them be permitted so that undesirable operational behavior does not occur in the form of pressure waves, pressure surges and blockage action with changes in the rate of flow and particularly upon starting the system for the first time.
Abstract:
Assembly is disclosed for clamping and sealing the end of a flattened tube. The assembly includes a groove for receiving an end of a flattened tube, and a clamping member including a beaded portion for clamping and sealing the end of a flattened tube when the clamping member is in a clamping position within the groove and the end of the flattened tube is properly disposed in said groove. The groove has a first groove surface and a second surface disposed at an oblique angle relative to said first surface, the second surface including a clamping portion, and the clamping member including a locking portion adapted to mate with said clamping portion of the second surface of the groove when the clamping member is in the clamping position within the groove, whereby the beaded portion is held in its sealing position relative to the end of the flattened tube disposed within the groove.
Abstract:
A membrane diffusion device, such as a membrane oxygenator, is disclosed which comprises a stack of flat membrane wall pairs and flat membrane supports in alternating, interleaving relation. The casing includes a pair of opposed sidewalls that are substantially parallel to flat sides of the stack, and a pair of substantially vertical crimps are formed on each of the sidewalls to provide external compression on the end portions of the stack.