Abstract:
Certain aspects of the present disclosure provide techniques that may be used to help enable low latency communications between a user equipment (UE) and a base station (BS) using quick uplink channels that enable a reduced transmission time interval (TTI). An example method generally includes identifying a plurality of slots in a subframe, receiving a resource configuration for an uplink channel, wherein the resource configuration is associated with a first slot of the plurality of slots, determining a resource for transmitting the uplink channel in a second slot of the plurality of slots, wherein the resource is determined based on the resource configuration associated with the first slot of the plurality of slots, and transmitting the uplink channel in the second slot using the determined resource.
Abstract:
Techniques for uplink transmission management in a wireless communications system are described herein. An example method may include receiving an explicit uplink grant that indicates one or more implicit uplink grants. In an aspect, the example method may include performing a first clear channel assessment (CCA) in response to the explicit uplink grant in a first time slot. In another aspect, the example method may include, if the first CCA fails, sequentially performing one or more additional CCAs respectively in one or more time slots subsequent to the first time slot in response to the one or more implicit uplink grants, and transmitting the PDU over the unlicensed or shared spectrum and in a time slot subsequent to the time slot in which one of the one or more additional CCAs succeeds.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. An eNB transmits pre-grant(s) to a UE(s) for a target resource on a contention-based carrier. In response, the UE(s) perform a CCA/eCCA and, when successful, transmit a preamble to the eNB based on the pre-grant. The eNB detects the preamble(s) and transmits grant confirmation(s) to the UE(s) for which a preamble was detected. The grant confirmation(s) may modify the pre-grant(s). The eNB may overschedule a target resource and based on the received preambles may transmit grant confirmation(s) that instruct a portion of the UEs for which a preamble was received to transmit data on a target resource and may instruct the remaining portion of the UEs for which a preamble was received to cease or modify data transmission.
Abstract:
Various aspects described herein relate to communicating a scheduling request (SR) in a wireless network. A frame structure that allows dynamic switching of transmission time intervals (TTI) between uplink and downlink communications may be used to communicate with a network entity. At least one SR mode can be selected for SR transmission to the network entity in one or more of the TTIs configured for uplink communications based at least in part on the frame structure. The SR can be transmitted to the network entity in at least one uplink TTI of the one or more TTIs configured for uplink communications based at least in part on the at least one SR mode.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with specifying a traffic-to-pilot (T/P) ratio per subframe and/or resource block to allow a base station to transmit over the subframes and/or resource blocks using varying transmit powers. In one example, a device communicating with the base station can receive a plurality of T/P ratios each related to a power used by the base station to transmit over one of a plurality of carriers in a specific subframe or resource block, determine a power of a reference signal received from the base station over a carrier of the plurality of carriers, and process a data signal received over the carrier within the specific subframe or resource block based in part on applying, to the power of the reference signal, a T/P ratio of the plurality of T/P ratios corresponding to the carrier.
Abstract:
Certain aspects of the present disclosure relate to techniques and apparatus for efficient support of variable bit rate (VBR) voice traffic on LTE uplink. In an aspect, a base station may periodically schedule transmission resources for use by a user equipment (UE) for transmitting data on a logical channel, wherein the periodically scheduling grants the UE a fixed first transport block (TB) size of transmission resources at regular intervals, receive an indication from the UE of an amount of data for transmission on the logical channel, and adjust the fixed first TB size of the periodically scheduled transmission resources to a fixed second TB size based on the indicated amount of data. In another aspect, a base station may configure a UE to enable scheduling request masking (SR-masking) on a logical channel, and configure the UE with a threshold amount of data for the logical channel to dynamically disable SR-masking on the logical channel. In another aspect, a UE may receive a configuration to enable scheduling request (SR) masking (SR-masking) on a logical channel, receive a configuration of a threshold amount of data for the logical channel to dynamically disable SR-masking on the logical channel, and decide whether to transmit an SR based on the amount of data to transmit and the threshold amount.
Abstract:
Heterogeneous networks incorporate various small cells, such as femto cells and pico cells, in addition to a macro cell. Existing signals (e.g., PSS and SSS) configured as discovery reference signals (DRSs) may not be sufficient for a UE to discover different cells in a heterogeneous network. The disclosed aspects provide approaches for managing cell IDs for various DRS configurations to improve UE discovery of different cells in heterogeneous networks. In an aspect, a UE receives a first reference signal (e.g., based on a PCI) configured for performing a base station measurement by the UE. The UE further receives one or more second reference signals (e.g., based on a VCI which is associated with the PCI) configured for measurement by the UE. The UE performs the base station measurement based on the first reference signal and the one or more second reference signals.
Abstract:
Certain aspects of the present disclosure provide procedures for power sharing, scaling, and power headroom reporting in dual connectivity operations. According to certain aspects, a method of wireless communication by a user equipment (UE) is provided. The method generally includes determining a maximum available transmit power of the UE, semi-statically configuring a first minimum guaranteed power available for uplink transmission to a first base station and a second minimum guaranteed power available for uplink transmission to a second base station, and dynamically determining a first maximum transmit power available for uplink transmission to the first base station and a second maximum transmit power available for uplink transmission to the second base station based, at least in part, on the maximum available transmit power of the UE, the first minimum guaranteed power, and the second minimum guaranteed power.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus generates a data transport block, divides the data transport block into a number of sub-blocks. The sub-blocks include at least a first sub-block and a second sub-block, where a size of the first sub-block is different than a size of the second sub-block. The apparatus may encode the number of sub-blocks using different code rates and/or different coding schemes. The apparatus may modulate the encoded sub-blocks using different modulation orders. The apparatus transmits the sub-blocks to a receiver.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. In one aspect, a user equipment (UE) receives a signal at the UE. The received signal includes a transmission from a serving cell and at least a first interfering transmission. The UE determines a constrained transmission rate associated with the first interfering transmission and cancels the first interfering transmission from the received signal based on the constrained transmission rate. In another aspect, a wireless communication apparatus determines a constrained transmission rate for a transmission on one or more reduced-rate resources. The wireless communication apparatus signaling the constrained transmission rate to a user equipment (UE).