Abstract:
Methods, systems, and devices are described for wireless communications. A device may utilize enhanced roaming techniques to identify a candidate channel for roaming. In one example, a device determines whether a candidate channel is congested by calculating a congestion metric associated with traffic over the shared channel. In some examples, the congestion metric is calculated based at least in part on an amount of energy measured over the candidate. For instance, the calculated congestion metric can be an instantaneous congestion level measured during a CCA. The device may then determine whether to roam to the candidate channel based at least in part on the calculated congestion metric.
Abstract:
Methods, systems, and devices are described for wireless communication. In one aspect, a method of wireless communication includes determining a transmit time metric associated with each transmission group of a number of transmission groups based at least in part on an amount of data in a transmit queue and a modulation and coding scheme (MCS) data rate for at least one wireless communication device in the transmission group. The method also includes scheduling a transmission to a first transmission group of the number of transmission groups based at least in part on the transmit time metric for the first transmission group.
Abstract:
Systems, methods, and devices are disclosed that identify a first peripheral and a second peripheral, receive information from the first peripheral and the second peripheral, communicate the information received from the first peripheral to the second peripheral, and communicate the information received from the second peripheral to the first peripheral. The information communicated to the first and second peripherals allow the first and second peripherals to communicate directly with one another.
Abstract:
In one example, a method includes performing, by a wireless dockee (WD), a plurality of operations to wirelessly dock with a wireless docking center (WDC) such that the WD may access one or more peripheral functions (PFs) associated with the WDC. In this example, the WD includes a docking service, an application service platform (ASP), and one or more peripheral services that each correspond to at least one PF of the one or more PFs associated with the WDC. In this example, the method also includes interfacing, by the docking service and with the ASP, to perform a first subset of the plurality of operations, and interfacing, by the docking service and with the one or more peripheral services, to perform a second subset of the plurality of operations.
Abstract:
Systems and methods are disclosed that may adjust the likelihood and/or frequency with which a wireless device performs scanning operations to reduce power consumption without degrading the ability of the wireless device to identify the best available access point with which to associate. In some aspects, the wireless device may adjust the likelihood and/or frequency of performing scanning operations based on a motion state of the wireless device, a change in the motion state of the wireless device, a signal strength of an associated access point, and/or the connection status of the wireless device.
Abstract:
Methods, systems, and devices are described for wireless communication. An access point (AP) may group stations (STAs) into multi-user (MU) groups with group identifiers (IDs). Within each MU group, the AP may dynamically configure several STAs into a transmission set. Each transmission set may include a different combination of STAs. In some cases, the AP may assign a STA to multiple transmission sets within a group ID. In certain scenarios, the AP may assign a STA to more than one group ID. The AP may restrict the number of group IDs to which a STA is assigned. Each MU group may include a number of user positions that may be occupied by one or more STAs. In some cases, the AP may restrict the number of STAs that may be assigned to (i.e., occupy) each user position.
Abstract:
Methods, systems, and apparatuses are described for wireless communications. More particularly, an access point (AP) identifies a plurality of multi-user multiple-input multiple-output (MU-MIMO) groups associated with a wireless station (STA). The AP determines a communication metric associated with each of the plurality of MU-MIMO groups. The communication metric provides an indication of the compatibility of the STAs in the MU-MIMO group. The AP prioritizes at least one of the plurality of MU-MIMO groups based at least in part on the communication metric associated with the prioritized MU-MIMO group. The AP creates a preferred group list and/or a blacklisted group list and included the prioritized MU-MIMO group in the appropriate group list.
Abstract:
In one example, a method includes sending a request to a wireless docking host to select one or more peripheral functions available via the wireless docking host in accordance with authentication and association information associated with a docking session with the wireless docking host. The method further includes sending a request to the wireless docking host to establish one or more payload connections with the wireless docking host, wherein the one or more payload connections are configured to communicate data via the wireless docking host for the selected one or more peripheral functions.
Abstract:
A wireless dockee device may include a memory, and at least one processor configured to authenticate the wireless dockee to a wireless docking service using a Wi-Fi direct service (WFDS) application service platform (ASP). A wireless docking center device may include a memory, and at least one processor configured to authenticate a wireless dockee to a wireless docking service of a wireless docking center using a Wi-Fi direct service (WFDS) application service platform (ASP).
Abstract:
A method of determining a modulation coding scheme (MCS) for communications between a communications device and a client station (STA). The communications device determines a first MCS for transmitting data to the STA during a first sounding interval based, at least in part, on channel state information received from the STA upon initiation of the first sounding interval. The device determines a first series of packet error rates (PERs) associated with one or more data transmissions to the STA during the first sounding interval. The device then determines a second MCS for transmitting data to the STA during a second sounding interval based, at least in part, on the first PER in the first series of PERs. Specifically, the second MCS is independent of the remaining PERs in the first series.