Abstract:
Methods and apparatuses for wireless communication are provided. A transmitting apparatus receives an indication to use multiple subframes to send uplink control information, codes the uplink control information over the multiple subframes based on the indication, and sends the coded uplink control information via the multiple subframes. Sending the coded uplink control information includes transmitting acknowledgement information (ACK) of a current downlink-centric self-contained subframe in an uplink acknowledgement portion of the current downlink-centric self-contained subframe, bundling ACK bits of multiple downlink-centric self-contained subframes and encoding the bundled ACK bits to generate parity acknowledgement bits associated with systematic acknowledgement bits, transmitting the systematic acknowledgement bits in each uplink acknowledgement portion of the multiple downlink-centric self-contained subframes, and transmitting the parity acknowledgement bits associated with the acknowledgement information bits of the multiple downlink-centric self-contained subframes in an uplink-centric self-contained subframe that is sequentially subsequent to the multiple downlink-centric self-contained subframes.
Abstract:
Various aspects described herein relate to distinguishing frequency shift keying (FSK) signals transmitted by each user of multiple users in a wireless communications system. One or more symbols for transmitting in an FSK-modulated signal can be obtained by a user. The one or more symbols can be encoded based on a tone location assignment corresponding to a unique spreading code associated with the user. Quadrature amplitude modulation (QAM) and/or phase-shift keying (PSK) can be performed over at least one tone associated with the encoded symbols. Each user can transmit the encoded symbols to a receiving entity, where the receiving entity can decode each symbol received from the plurality of users to produce a distinguishable symbol for each user based on the unique spreading codes associated with each user.
Abstract:
Various aspects of the present disclosure provide for methods, apparatus, and computer software for transmitting a common uplink burst in time division duplex (TDD) carriers. The common uplink burst includes a sounding reference signal (SRS) transmitted separate from (e.g., decoupled from) a demodulation reference signal (DM-RS). At least one symbol in the common uplink burst includes a control region for carrying control information and a data region for carrying data information. The SRS may be precoded separately from precoding of the control and data regions, so that the control and/or data information may be transmitted utilizing multiple input multiple output (MIMO).
Abstract:
Various aspects of the present disclosure provide for methods, apparatus, and computer software for multiple access to a channel carrying a common uplink burst transmitted by users that utilize two different modes. Specifically, a coupled mode provides for range extension for users at a cell edge, while a decoupled mode provides for user data transmissions within the common uplink burst. Multiple access between these different modes may be provided in a non-orthogonal scheme by moderating the amount of interference between the respective modes. Further, multiple access between these different modes may be provided in an orthogonal scheme by utilizing interleaved frequency division multiple access (IFDMA).
Abstract:
Mobile originated and terminated data transmissions are discussed. Communication devices such as user equipment (UE) can be dynamically configured by a network to send and receive data. When a UE connects to a new network, the network can determine mobility of the UE and/or the network resource allocation granularity. Based at least on the network's determinations, the UE can be configured such that access data having a comparatively long life span is used and reused for multiple data transmissions. In some scenarios, access data can be refreshed after expiration of a period of time. Refresh time can be equal to expected life span of reusable access data. After UE configuration, the UE performs mobile originated and terminated data transmissions according to the configuration. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Systems and methods are disclosed for enhancing the power efficiency of low power internet of everything (JOE) devices or user equipments (UEs). A UE or IOE having a low power companion receiver maintains its full power receiver in a sleep state until it receives a wake up indicator from a base station. In response to the wake up signal, the UE or IOE powers up its full power receiver and receives data from the base station. The base station further schedules the wake up signals so as not to collide with control signals expected by UEs or IOEs without low power receivers, or those UEs and IOEs are configured to detect and react to the wake up signals.
Abstract:
A wireless network may provide system information by either a fixed periodic broadcast or broad-beam transmission or in response to a request by a user equipment (UE). The wireless network may broadcast (or broad-beam transmit) a signal that indicates to the UEs within a cell or zone coverage area that system information is to be transmitted on a fixed periodic schedule or in response to a request sent by one or more UEs.
Abstract:
The present disclosure describes a method, an apparatus, and a computer readable medium for a multilayer transmission in a wireless network. For example, the method may include generating a group of binary data bits for resources of each layer of a plurality of layers, mapping the group of binary data bits of each layer of the plurality of layers to respective code words in a signal constellation, combining the code words, and transmitting the combined code word to receiver in the wireless network. As such, the multilayer transmission in a wireless network is achieved.
Abstract:
A wireless network may provide system information by either a fixed periodic broadcast or broad-beam transmission or in response to a request by a user equipment (UE). The wireless network may broadcast (or broad-beam transmit) a signal that indicates to the UEs within a cell or zone coverage area that system information is to be transmitted on a fixed periodic schedule or in response to a request sent by one or more UEs.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) and a base station may support switching from one waveform to another on uplink channels. For example, a UE and a base station may utilize both frequency division multiplexing (SC-FDM) waveform and an orthogonal frequency division multiplexing (OFDM) waveforms based on channel conditions and other factors. In some examples, a UE may switch for some uplink channels, and use a single waveform for other channels. For example, switching waveforms for channels that utilize frequency domain code division multiplexing (CDM) channel may interrupt the orthogonality of multiplexed transmissions. A UE may transition from one waveform to another either autonomously or based on an explicit indication from a base station. If a UE switches autonomously, it may send an indication of the transition to the serving base station.