Abstract:
A method of radio link monitoring (RLM) and radio link failure (RLF) handling over a secondary serving cell (SCELL) is proposed. In a wireless network, a user equipment (UE) establishes a radio resource control (RRC) connection with a base station (eNB). The UE applies carrier aggregation for multiple component carriers (CCs) configured as multiple serving cells. The UE performs radio link monitoring over a primary serving cell (PCELL). The UE also performs radio link monitoring over a secondary serving cell (SCELL). The SCELL belongs to a CC group of one or more CCs, and used as a reference cell for the CC group. When SCELL performance is below pre-defined criteria, the UE and the eNB apply certain actions over the SCELL. The proposed SCELL RLM/RLF handling prevents spurious and uncontrollable uplink SCELL transmission and interference to other UEs.
Abstract:
Methods for UE enhancements for diverse data application are disclosed. In one embodiment of the invention, the UE applies a discontinuous reception (DRX) or discontinuous transmission (DTX) operation in a wireless network. The UE detects one or more predefined traffic conditions. Based on the detected traffic conditions, the UE either stays in the long DRX state longer or extends the short DRX cycle timer. In other embodiments of the invention, the UE configures an idle mode trigger condition. The UE detects one or more predefined traffic condition. Based on the detected traffic conditions, the UE may restart the inactivity timer. In other embodiments of the invention, the UE detects one or more predefined traffic conditions. The UE adaptively adjusts RLF triggering parameters based on the detected traffic conditions.
Abstract:
Various schemes are provided to improve SR resource utilization by adapting SR resource allocation to traffic pattern. In a first Scheme, SR resource allocation is configured more accurately. In one example, UE provides assistant information for eNB to determine or adjust SR configuration based on the received assistant information. In a second Scheme, multiple SR periods are configured and adapted to traffic pattern. In one example, eNB configures a set of SR resources with multiple SR periods, and UE applies different SR periods based on predefined events. Unused SR resources could be recycled by eNB for PUSCH data transmission. In a third Scheme, multiple SR allocations are configured and adapted to concerned applications. In one example, eNB configures multiple sets of SR resources adapted to predefined applications, and UE applies SR configurations based on corresponding applications. The additional SR configurations could be activated and/or deactivated.
Abstract:
A method of failure event reporting for initial connection setup failure is proposed. In one embodiment, a UE first camps in RRC_IDLE mode in a cell served by a base station. The UE then detects a connection setup failure when performing a random access channel (RACH) procedure with the base station in an RRC connection attempt. The UE records a failure event report when the RACH procedure fails. Later, the UE transmits the failure event report to the network in RRC_CONNECTED mode. The failure event report comprises information that refers to the earlier RRC connection attempt. The failure event report also comprises available location information or available mobility measurements at the time the initial connection setup failure occurs. Based on the failure event report, the network can adopt corrective actions accordingly to mitigate the failure.
Abstract:
A method and apparatus for active location acquisition. An active location acquisition controller is included in a device. The active location acquisition controller can be a circuit or code running on a processor included in the device. A measurement collection request is communicated to the device. The device then determines if and how a location information is to be acquired. If the device determines that the location information is to be acquired, the device enables a location acquisition system to acquire the location information and the device then acquires the requested measurement and stores the requested measurement and the location information in the measurement log. If the device determines that the location information is not to be acquired, the device disables a location acquisition system and does not acquire the location information and the device then acquires the requested measurement and stores the requested measurement in the measurement log.
Abstract:
Various examples and schemes pertaining to NB-IoT physical random access channel (PRACH) resource partitioning and multiple grants in random access response (RAR) for early data transmission (EDT are described. A network node schedules multiple grants for EDT during a random access (RA) procedure with a user equipment (UE). The network node transmits to the UE a message indicating the multiple grants mapped to a maximum broadcast transport block size (TBS) configured for each of one or more preamble resource of a plurality of preamble resources. The UE calculates a TBS that fits an uplink (UL) data packet of the UE. The UE selects one or more PRACH resources for EDT for the TBS based on a wireless communication coverage of the UE by the network node. The UE transmits to the network node in the RA procedure a first message (Msg1) indicating the selected one or more PRACH resources.
Abstract:
Apparatus and methods are provided for on-demand system information (SI) delivery. In one novel aspect, an indicator in the minimum system information (MSI) indicates whether an SI or an SI group is delivered with broadcast or unicast. In one embodiment, the UE receives a MSI, obtains from the MSI the other SI (OSI) delivery mode indicator, and sends an on-demand SI request if the OSI delivery mode indicates the unicast delivery mode, otherwise acquires OSI information in a predefined or scheduled period if the OSI delivery mode indicates the broadcast delivery mode. In one embodiment, the delivery mode is unicast and the SI request is sent at a timing or resource explicitly configured in a SI change notification message. In another embodiment, the delivery mode is broadcast and updated SI is obtained based on the scheduling information included in the SI change notification message.
Abstract:
A generic access control procedure is proposed. Every action that is subject to access control is associated with an access category, and each access category is in turn associated with a set of access control parameters. From the APP layer, a UE detects an action that is subject to access control. The UE obtains and stores access categorization rules. In NAS layer, the UE determines the access category for the action. The UE then determines the set of access control parameters for the action. In AS layer, the UE finally applies the set of access control parameters to the action and makes a barring decision for the action. By defining a generic access control procedure and separating access control functions into NAS layer and AS layer, the generic access control is simplified and extendible.
Abstract:
Various examples and schemes pertaining to user equipment (UE) group wake-up signal (WUS) in narrowband IoT (NB-IoT) are described. A wireless network indicates to a plurality of user equipment (UEs) a paging configuration of a UE-group wake-up signal (WUS) for one or more groups of UEs among the plurality of UEs in an NB-IoT cell. The paging configuration may be related to a discontinuous reception (DRX) cycle and a value related to UE identification of each UE in the one or more groups of UEs. The wireless network also transmits the UE-group WUS to the one or more groups of UEs.
Abstract:
Various examples and schemes pertaining machine-to-machine (M2M) semi-persistent scheduling (SPS) in wireless communications are described. A user equipment (UE) receives a control signal from a network node of a wireless network. The UE applies, based on the control signal, an SPS configuration such that the UE enters one of one or more low-power modes between two adjacent SPS occasions.