Abstract:
A method for receiving a reference signal for positioning in a wireless communication system by a user equipment (UE) is disclosed. The method includes receiving a plurality of reference signal sequences for positioning to which different frequency shift values are applied, calculating a correlation between the plurality of reference signal sequences for positioning and transmitted reference signal sequences for positioning corresponding to the plurality of reference signal sequences in a time domain, and determining a time domain index having a highest value from the correlation as a reference time point for positioning, wherein the frequency shift value is determined according to the sum of multiplication of an index of each reference signal sequence and a frequency shift interval, and frequency offset.
Abstract:
The present invention provides a method and an apparatus for reducing the amount of upper layer signals. Also, the present invention provides a method and an apparatus comprising: defining a new identifier for transmitting an upper layer signal for user equipment in a specific mode; and transmitting the upper layer signal by means of scrambling by using the new identifier, transmitting along with an error detection sign by using the new identifier, transmitting by using a user equipment-specific reference signal by using the new identifier, or transmitting based on control information transmitted by using the new identifier.
Abstract:
The present invention provides: a base station for repeatedly transmitting a physical downlink control channel (PDCCH) during a first subframe bundle comprising a plurality of subframes, and transmitting a PDSCH related to the PDCCH; and user equipment for receiving the PDCCH and the PDSCH. The PDSCH can be transmitted to the user equipment starting from subframe n+k, which is the kth subframe after the last subframe n−1 in the first subframe bundle, wherein k is an integer bigger than 0. The first subframe bundle may begin from a predetermined or fixed position.
Abstract:
Disclosed are a method and an apparatus for transmitting a reference signal. The method for transmitting the reference signal comprises the step of: transmitting a secondary synchronization signal (SSS) and a primary synchronization signal (PSS) from a subframe including an N (natural number wherein N>1) number of resource blocks (RB) and a plurality of orthogonal frequency division multiplexing (OFDM) symbols; and transmitting from the subframe the reference signal which is generated on the basis of a cell identifier, wherein the reference signal can be transmitted from an M (natural number wherein K
Abstract translation:公开了一种用于发送参考信号的方法和装置。 用于发送参考信号的方法包括以下步骤:从包括N(自然数,其中N> 1)个资源块(RB)的子帧的子帧和从主同步信号(PSS)发送辅同步信号(SSS)和主同步信号 多个正交频分复用(OFDM)符号; 并且从子帧发送基于小区标识符生成的参考信号,其中可以从M(自然数,其中K <= M
Abstract:
According to the present invention, a common reference signal is transmitted in a subframe configured to receive the common reference signal and/or a fixed subframe predefined to receive the common reference signal, from among a plurality of subframes within a frame. In the present invention, the common reference signal is transmitted in every subframe within a legacy frame duration. However, the common reference signal is transmitted in said configured subframe and/or said fixed subframe within a frame duration which is not a legacy frame duration.
Abstract:
The present specification provides a method of performing physical downlink control channel (PDCCH) monitoring by a terminal in a wireless communication system, comprising the steps of: receiving, from a network, information related to power saving; and performing the PDCCH monitoring on the basis of the received information related to the power saving, wherein the information related to the power saving, which is a single piece of information, is information indicating at least one of whether the terminal is to perform a wake-up operation or whether the terminal is to perform a sleep operation.
Abstract:
A method and apparatus for performing an initial access procedure in a wireless communication system is provided. A low cost user equipment (UE) transmits a list of capabilities to a network, and receives a reject message from the network when at least one of the capabilities is not supported by the network. The list of capabilities may be transmitted during a random access procedure via a random access preamble on a physical random access channel (PRACH) or a message 3 on a physical uplink shared channel (PUSCH). The reject message may be received during the random access procedure a random access response or an acknowledge message for the message 3.
Abstract:
Provided are a method and apparatus for monitoring a physical downlink control channel (PDCCH) of a user equipment (UE) in a wireless communication system. The method includes receiving information which reports one configuration among a plurality of configurations related to the PDCCH monitoring through a first transmit-receive point (TRP), and performing the PDCCH monitoring, based on the one configuration. The one configuration reports a combination of a resource pattern index and a PDCCH control resource set (CORESET) index. The one configuration may be for a second TRP.
Abstract:
A method and apparatus for transmitting/receiving a downlink channel in a wireless communication system are provided. A physical downlink control channel (PDCCH) can be transmitted using one or more resource element groups (REGs) among a plurality of REGs in a transmission time interval (TTI). Each of the plurality of REGs occupies 12 consecutive resource elements (REs) belonging to a physical resource block (PRB) along a frequency domain within an orthogonal frequency division multiplexing (OFDM) symbol with or without a reference signal (RS) in the TTI.
Abstract:
Various embodiments relate to a next generation wireless communication system for supporting a data transmission rate higher than that of a 4th generation (4G) wireless communication system. According to various embodiments, provided are a method for transmitting/receiving a signal in a wireless communication system, and an apparatus for supporting same, and various other embodiments can also be provided.