Downlink control channel transmissions

    公开(公告)号:US10595309B2

    公开(公告)日:2020-03-17

    申请号:US16094191

    申请日:2017-03-30

    Abstract: Technology for a user equipment (UE) operable to identify downlink control channel candidates for receiving downlink control channel information is disclosed. The UE can decode a downlink control information (DCI) format received from an eNodeB. The DCI format can indicate a set of resource blocks (RBs) in one or more subframes allocated for reception or transmission of data or control information in a shortened transmission time interval (S-TTI). The UE can identify a subset of resource elements (REs) within the set of RBs in the one or more subframes. The subset of REs can correspond to shortened physical downlink control channel (S-PDCCH) candidates in the S-TTI of one or more subframes. The UE can attempt to decode the S-PDCCH candidates in the S-TTI of the one or more subframes. S-PDCCH candidates that are successfully decoded can cause the UE to identify the downlink control information.

    RS (REFERENCE SIGNAL) SEQUENCE GENERATION AND MAPPING AND PRECODER ASSIGNMENT FOR NR (NEW RADIO)

    公开(公告)号:US20200052939A1

    公开(公告)日:2020-02-13

    申请号:US16500971

    申请日:2018-05-03

    Abstract: Techniques discussed herein can facilitate RS (Reference Signal) sequence generation and mapping, and/or precoder assignment, for NR (New Radio). One example embodiment employable at a NR wireless communication device comprises processing circuitry configured to: generate one or more PN (Pseudo Noise) sequences based at least in part on an initial state of a PN generator; extract, for each PRB (Physical Resource Block) of one or more PRBs, an associated portion of an associated PN sequence of the one or more PN sequences, based at least in part on a reference subcarrier index, independent of a bandwidth part configuration and of a maximum supported number of PRBs; and generate, for each PRB of the one or more PRBs, an associated set of RS(s) for that PRB based at least in part on the extracted associated portion of the associated PN sequence for that PRB.

    SUPPORT OF FLEXIBLE PDCCH MONITORING IN NEW RADIO (NR)

    公开(公告)号:US20190306737A1

    公开(公告)日:2019-10-03

    申请号:US16462644

    申请日:2018-05-04

    Abstract: Technology for a user equipment (UE), operable for monitoring a physical downlink control channel (PDCCH) is disclosed. The UE can monitor a downlink (DL) control channel for DL control information (DCI) at a predetermined monitoring occasion, wherein the predetermined monitoring occasion has a periodicity of P slots or P symbols with an offset Os. The UE can monitor a downlink (DL) control channel for DL control information (DCI) at a predetermined monitoring occasion, wherein Os has San offset with respect to a first slot in subframe number zero (SFN#0). The UE can monitor a downlink (DL) control channel for DL control information (DCI) at a predetermined monitoring occasion, wherein P is a positive integer greater than zero.

    DOWNLINK CONTROL INFORMATION DESIGN WITH SHORTER TTI

    公开(公告)号:US20190268931A1

    公开(公告)日:2019-08-29

    申请号:US16346335

    申请日:2017-10-26

    Abstract: Downlink control information techniques for wireless communications with shorter TTI (S-TTI) length are disclosed. An apparatus of a user equipment (UE) can include processing circuitry configured to decode signaling indicating a duration of a time window, the time window comprising a plurality of S-TTIs forming a single TTI. Absence of a discontinuous reception (DRX) indicator is detected within control information received within a first S-TTI of the plurality of S-TTIs. Upon detecting the absence of the DRX indicator within received control information, a S-PDCCH within each of the plurality of S-TTIs is monitored during the duration. Scheduling information received via the S-PDCCH within one of the plurality of S-TTIs is decoded, and data is encoded for transmission on a shared data channel based on the scheduling information.

    PHASE TRACKING REFERENCE SIGNAL (PT-RS) POWER BOOSTING

    公开(公告)号:US20190140729A1

    公开(公告)日:2019-05-09

    申请号:US16238232

    申请日:2019-01-02

    Abstract: User equipment (UE) can include processing circuitry configured to decode radio resource control (RRC) signaling from a base station, the RRC signaling indicating a transmission coding scheme for a physical uplink shared channel (PUSCH) transmission. PUSCH-to-phase tracking reference signal (PT-RS) energy per resource element (EPRE) ratio is determined using the RRC signaling. A PT-RS power boosting factor is determined based on the transmission coding scheme and the PUSCH-to-PT-RS EPRE ratio. The PT-RS is encoded for transmission using a plurality of PT-RS symbols, the transmission using increased transmission power corresponding to the PT-RS power boosting factor. The RRC signaling further includes a flag enabling the PT-RS transmission. The PUSCH-to-PT-RS EPRE ratio is 00 or 01, and the transmission coding scheme is a codebook-based uplink transmission or non-codebook-based uplink transmission.

    DOWNLINK CONTROL CHANNEL DESIGN IN NEW RADIO SYSTEMS

    公开(公告)号:US20190045490A1

    公开(公告)日:2019-02-07

    申请号:US16126260

    申请日:2018-09-10

    Abstract: An apparatus configured to be employed in a gNodeB associated with a new radio (NR) communication system that support resource sharing between NR physical downlink shared channel (PDSCH) and NR physical downlink control channel (PDCCH) is disclosed. The apparatus comprises a processing circuit configured to generate a PDSCH dynamic rate matching resource set configuration signal comprising information on one or more overlap resource sets, wherein each the one or more overlap resource sets comprises time-frequency resources on which any overlapping PDSCH may or may not be mapped, based on an indication provided within a PDSCH rate matching indicator signal. The apparatus further comprises a radio frequency (RF) interface, configured to provide the generated PDSCH dynamic rate matching resource set configuration signal, to an RF circuitry, in order to subsequently provide the PDSCH dynamic rate matching resource set configuration signal to a user equipment (UE), in order to enable the UE to identify the one or more overlap resource sets.

Patent Agency Ranking