Abstract:
An example method includes detecting, using sensors, packets throughout a datacenter. The sensors can then send packet logs to various collectors which can then identify and summarize data flows in the datacenter. The collectors can then send flow logs to an analytics module which can identify the status of the datacenter and detect an attack.
Abstract:
An application and network analytics platform can capture comprehensive telemetry from servers and network devices operating within a network. The platform can discover flows running through the network, applications generating the flows, servers hosting the applications, computing resources provisioned and consumed by the applications, and network topology, among other insights. The platform can generate various models relating one set of application and network performance metrics to another. For example, the platform can model application latency as a function of computing resources provisioned to and/or actually used by the application, its host's total resources, and/or the distance of its host relative to other elements of the network. The platform can change the model by moving, removing, or adding elements to predict how the change affects application and network performance. In some situations, the platform can automatically act on predictions to improve application and network performance.
Abstract:
Systems, methods, and computer-readable media for identifying bogon addresses. A system can obtain an indication of address spaces in a network. The indication can be based on route advertisements transmitted by routers associated with the network. The system can receive a report generated by a capturing agent deployed on a host. The report can identify a flow captured by the capturing agent at the host. The system can identify a network address associated with the flow and, based on the indication of address spaces, the system can determine whether the network address is within the address spaces in the network. When the network address is not within the address spaces in the network, the system can determine that the network address is a bogon address. When the network address is within the address spaces in the network, the system can determine that the network address is not a bogon address.
Abstract:
Systems, methods, and computer-readable media for hierarchichal sharding of flows from sensors to collectors. A first collector can receive a first portion of a network flow from a first capturing agent and determine that a second portion of the network flow was not received from the first capturing agent. The first collector can then send the first portion of the network flow to a second collector. A third collector can receive the second portion of the network flow from a second capturing agent and determine that the third collector did not receive the first portion of the network flow. The third collector can then send the second portion of the network flow to the second collector. The second collector can then aggregate the first portion and second portion of the network flow to yield the entire portion of the network flow.
Abstract:
A method provides for receiving network traffic from a host having a host IP address and operating in a data center, and analyzing a malware tracker for IP addresses of hosts having been infected by a malware to yield an analysis. When the analysis indicates that the host IP address has been used to communicate with an external host infected by the malware to yield an indication, the method includes assigning a reputation score, based on the indication, to the host. The method can further include applying a conditional policy associated with using the host based on the reputation score. The reputation score can include a reduced reputation score from a previous reputation score for the host.
Abstract:
An example method includes detecting, using sensors, packets throughout a datacenter. The sensors can then send packet logs to various collectors which can then identify and summarize data flows in the datacenter. The collectors can then send flow logs to an analytics module which can identify the status of the datacenter and detect an attack.
Abstract:
A network can achieve compliance by defining and enforcing a set of network policies to secure protected electronic information. The network can monitor network data, host/endpoint data, process data, and user data for traffic using a sensor network that provides multiple perspectives. The sensor network can include sensors for networking devices, physical servers, hypervisors or shared kernels, virtual partitions, and other network components. The network can analyze the network data, host/endpoint data, process data, and user data to determine policies for traffic. The network can determine expected network actions based on the policies, such as allowing traffic, denying traffic, configuring traffic for quality of service (QoS), or redirecting traffic along a specific route. The network can update policy data based on the expected network actions and actual network actions. The policy data can be utilized for compliance.
Abstract:
Methods, systems, and computer readable media are provided for determining, in a virtualized network system, a relationship of a sensor relative to other sensors. In a virtualized computing system in which a plurality of software sensors are deployed and in which there are one or more traffic flows, captured network data is received from the plurality of sensors, the captured network data from a given sensor of the plurality of sensors indicating one or more traffic flows detected by the given sensor. The received captured network data is analyzed to identify, for each respective sensor, a first group of sensors, a second group of sensors, and a third group of sensors, wherein all traffic flows observed by the first group of sensors are also observed by the second group of sensors, and all traffic flows observed by the second group of sensors are also observed by the third group of sensors. For each respective sensor, a location of each respective sensor relative to other sensors within the virtualized computing system is determined based upon whether the respective sensor belongs to the first group of sensors, the second group of sensors, or the third group of sensors.
Abstract:
An example method includes calculating latency bounds for communications from two sensors to a collector (i.e., maximum and minimum latencies). After the collector receives an event report from the first sensor and an event report form the second sensor, the collector can determine, using the latency bounds, whether one event likely preceded the other.
Abstract:
Conditional policies can be defined that change based on security measurements of network endpoints. In an example embodiment, a network traffic monitoring system can monitor network flows between the endpoints and quantify how secure those endpoints are based on analysis of the network flows and other data. A conditional policy may be created that establishes one or more first connectivity policies for handling a packet when a security measurement of an endpoint is a first value or first range values, and one or more second connectivity policies for handling the packet. The connectivity policies may include permitting connectivity, denying connectivity, redirecting the packet using a specific route, or other network action. When the network traffic monitoring system detects a change to the security measurement of the endpoint, one or more applicable policies can be determined and the system can update policy data for the network to enforce the policies.