Abstract:
Methods to control reconfiguration of multiple radio access bearers in a mobile wireless device connected to a wireless network are described. The mobile wireless device is connected to the wireless network through a voice connection and a data connection simultaneously. The data connection is concurrently active with the voice connection. Transmission of one or more signaling messages for the data connection is delayed until the voice connection terminates. Representative signaling messages include messages that reconfigure a radio access bearer supporting the data connection and messages estimated to exceed a pre-determined transmission time interval.
Abstract:
Devices and associated methods for operating a dual-subscriber identity module (SIM) dual-standby (DSDS) user equipment device (UE) configured with a first SIM and a second SIM. The UE transmits a connection request message to a base station over a first network using the first SIM, where the connection request message includes one or more capability indications of the UE. The UE receives a connection accept message from the base station, where the connection accept message includes one or more network capability indications corresponding to respective UE capability indications of the one or more UE capability indications. The UE performs communications with the base station according to the one or more network capability indications.
Abstract:
Devices and associated methods for operating a dual-subscriber identity module (SIM) dual-standby (DSDS) user equipment device (UE) configured with a first SIM and a second SIM. The UE performs communications with a first cellular network using the first SIM and a first radio resource control (RRC) connection, and receives a request to perform a higher priority communication using the second SIM. In response to the request to perform the higher priority communication, the UE transmits a request to the first network to suspend the first RRC connection. After transmission of the request to suspend the first RRC connection, the UE receives a message from the first network to place the first RRC connection in an inactive state, and initiates a timer, wherein the timer is used to determine whether the first RRC connection remains in the inactive state or transitions to an idle state.
Abstract:
Techniques discussed herein can facilitate inactive state transmissions for a Base Station (BS) via a 4-step or 2-step inactive state RACH process. One example aspect is a BS including communication circuitry and one or more processors communicatively coupled to the communication circuitry and configured to cause the BS to transmit a radio link quality threshold and an uplink data size for a Radio Resource Control (RRC) inactive data transmission. Receive a Random Access Channel (RACH) preamble in response to the radio link quality threshold and the uplink data size being satisfied. Receive the RRC inactive data transmission, and transmit a RACH message in response to receiving the RRC inactive data transmission.
Abstract:
Methods and devices for selecting an edge application server (EAS) to service a user equipment (UE). One exemplary method incudes determining that a current protocol data unit (PDU) session of an application being executed by a UE is being serviced by a first EAS, determining that the first EAS is no longer suitable to service the application, selecting a second EAS to service the application and instructing the UE to use the second EAS for future PDU sessions for the application.
Abstract:
Apparatuses, systems, and methods for a user equipment device (UE) to perform methods for network assisted side-link resource configuration for unicast and/or multi-cast/groupcast communications in V2X networks. A UE may, after establishing an RRC connection with a base station, transmit, to the base station, V2X connection information. The V2X connection information may include a V2X identifier associated with the UE and a V2X identifier associated with a target UE. The UE may receive, from the base station, a side-link configuration for data transmission with the target UE. The side-link configuration may include a resource allocation defined in time and frequency (e.g., a transmit/receive pool). The UE may communicate with the target UE using the resource allocation included in the side-link configuration.
Abstract:
This disclosure relates to performing implicit radio resource control state transitions in a cellular communication system. A wireless device may establish a radio resource control (RRC) connection with a cellular base station. A data inactivity timer length and a target RRC state for implicit RRC transitions may be determined. A data inactivity timer having the determined data inactivity timer length may be initiated. It may be determined that the data inactivity timer has expired. The wireless device may transition to the target RRC state based at least in part on determining that the data inactivity timer has expired.
Abstract:
A transmitter (e.g. a packet data convergence protocol, PDCP, in the transmitter), which may be a base station for downlink communications or a user equipment device for uplink communications, may control timing of the delivery of duplicate (same) packets to multiple (e.g. two) wireless links (e.g. radio link control links) for transmission to a receiver, based at least on synchronization information received from the receiver. The duplicate packets may be transmitted over the multiple wireless links to the receiver, which may receive the duplicate packets over the multiple wireless links. The receiver may collect and/or generate synchronization information indicative of the timing or latency between the multiple wireless links, based at least on the respective receive timings of the duplicate packets over the multiple wireless links. The receiver may transmit a report containing the synchronization information to the transmitter periodically and/or in response to a trigger event.
Abstract:
A user equipment (UE) is associated with a cellular network, the UE and the cellular network are configured with a Discontinuous Reception (DRX) functionality, the DRX functionality including a cycle with a plurality of onDurations. The UE receives an indication of at least one parameter the cellular network is to utilize for the transmission of an emergency message, generates a monitoring schedule based on the indication of the at least one parameter, wherein the monitoring schedule does not include at least one of the plurality of onDurations and activates a mode of operation where the UE monitors for the emergency message based on the monitoring schedule.