Abstract:
An impact-driven tool includes a cylinder and a piston slidably inserted into the cylinder and has a large-diameter portion. The cylinder includes: a chamber on one end side; a chamber on the other end side; a communication path that allows the chamber on one end side and the chamber on the other end side to communicate with each other; and a valve chamber that is continuous with one end side in the axial direction of the communication path, and a valve body for piston lifting control that is incorporated so as to be movable up and down and is provided in the valve chamber.
Abstract:
Provided is a hydraulic hammering device having improved hammering efficiency and of low cost. A piston has a valve switching groove between large-diameter sections thereof. A cylinder has three control ports at positions corresponding to the valve switching groove. A switching valve mechanism has a valve presser for always pressing a valve in one direction and also has a valve controller for moving, when supplying pressurized oil, the valve in the opposite direction against the pressing force of the valve presser. A valve control port communicates with the valve controller so as to supply the pressurized oil to the valve controller and is separated from a piston front chamber and a piston rear chamber. Only either a piston retraction control port or a piston advance control port communicates with the valve control port depending on advance or retraction of the valve switching groove.
Abstract:
A percussion piston for a rock drill machine having a pilot cylinder, a distributor and a pressure medium includes a control edge configurable to cause a change in the position of the distributor in a direction parallel to the axial direction of the percussion piston as the percussion piston moves in the impact direction (A) in relation to the pilot cylinder. The control edge of the percussion piston includes at least one notch provided on the outer periphery of the control edge and arranged to cause a start of a state change for the distributor before the control edge of the percussion piston passes by a corresponding control edge provided on the distributor or pilot cylinder.
Abstract:
An impact system for a hydraulic hammer is disclosed. The impact system may include a piston, a sleeve disposed co-axial with the piston, and an accumulator membrane disposed external to the sleeve. A first seal may be located at an end of the sleeve, and configured to connect the sleeve to the piston. The accumulator membrane may have an extension configured to engage a recess in the sleeve.
Abstract:
An impact-driven tool includes a cylinder and a piston slidably inserted into the cylinder and has a large-diameter portion. The cylinder includes: a chamber on one end side; a chamber on the other end side; a communication path that allows the chamber on one end side and the chamber on the other end side to communicate with each other; and a valve chamber that is continuous with one end side in the axial direction of the communication path, and a valve body for piston lifting control that is incorporated so as to be movable up and down and is provided in the valve chamber.
Abstract:
A percussion piston for a rock drill machine having a pilot cylinder, a distributor and a pressure medium includes a control edge configurable to cause a change in the position of the distributor in a direction parallel to the axial direction of the percussion piston as the percussion piston moves in the impact direction (A) in relation to the pilot cylinder. The control edge of the percussion piston includes at least one notch provided on the outer periphery of the control edge and arranged to cause a start of a state change for the distributor before the control edge of the percussion piston passes by a corresponding control edge provided on the distributor or pilot cylinder
Abstract:
A self-charging assembly having a first side wall, a second side wall, a third sidewall, a first chamber, a second chamber, a first valve assembly, and a second valve assembly. The second side wall is disposed within the first side wall. The third sidewall connects the first side wall and the second side wall. The first chamber is defined by the first, second, and third sidewalls. The second chamber is disposed within the first chamber and is defined by the second side wall. The first valve assembly is configured to selectively place an interior portion of the second chamber in communication with an atmosphere outside of the self-charging assembly. The second valve assembly is configured to selectively place an interior portion of the first chamber in communication with the interior portion of the second chamber.
Abstract:
A device in a hydraulic rock drilling machine (1) including a distribution valve (7,7′, 7″) arranged in connection with the rock drilling machine for controlling hydraulic flows to different parts of the rock drilling machine, wherein the distribution valve includes a valve body (8, 8′, 8″), which is arranged movable to and fro in axial directions inside a valve chamber (33) and wherein the valve chamber is limited in axial direction by two valve end walls (10,11; 10′,11; 10″,11″). One of the valve end walls is movable in an axial direction against an abutment (12,12″) in such a way that it defines an end position for the valve body, and a pressing device (13,13′,13″) is arranged for pressing said at least one of the valve end walls against said abutment. The invention also relates to a rock drilling machine.
Abstract:
A switching method includes starting up a percussion device in acting on a control device arranged to vary the striking stroke of the striking piston between a short striking stroke and a long striking stroke. The percussion device is forced to operate on a short striking stroke for a predetermined period of time from the starting up of the device, and in acting on the control device so as to allow the percussion device to operate on a long striking stroke, after the expiry of the predetermined period of time.
Abstract:
A rock drilling machine equipped with an axial bearing having at least one axial piston for setting the axial position of a drill shank and for damping stress pulses returning from the rock. The axial bearing includes a module that is detachable in one piece from one installation direction. The axial bearing module includes all necessary seals, bearing surfaces, and a module frame. Supporting forces caused by the operation of the axial bearing are transmitted of support members in the module frame directly to the body of the rock drilling machine, which is a uniform piece at least at the axial bearing.