Abstract:
An electronic component includes a substrate; a piezoelectric material layer supported directly or indirectly by the substrate; a first electrode arranged on a surface of the piezoelectric material layer on an opposite side of the substrate; and a second electrode arranged on a surface of the piezoelectric material layer on the substrate side. The piezoelectric material layer is sandwiched between the first electrode and the second electrode. The first electrode has a smaller surface area than the piezoelectric material layer. A portion where the piezoelectric material layer is exposed from the first electrode includes a portion that is thinner than a thickness of the piezoelectric material layer between the first electrode and the second electrode. Thus, it is possible to configure a resonator with a higher frequency than its ordinary resonance, and it is easy to achieve an adjustment of the resonance frequency of the resonator, as well as improving the yield of the component and enabling the configuration of an electronic component that includes a plurality of resonators of different frequencies.
Abstract:
The present invention provides a method for tuning a thin film resonator (TFR) filter comprising a plurality of TFR components formed on a substrate. Each of the TFR components has a set of resonant frequencies that depend on material parameters and construction. TFR bandpass filter response for example can be produced by shifting the set of resonant frequencies in at least one of the series branch TFR components so as to establish the desired shape of the bandpass response and the desired performance of the filter. The shifting may be advantageously performed by removing piezoelectric material from the series branch TFR component, providing a TFR filter with bandwidth and attenuation advantages over that conventionally achieved by down-shifting resonant frequency sets of the shunt TFR components by adding metal material. Additionally, the above method can be used to produce a stopband TFR filter with a desired response by removing piezoelectric material from the shunt branch TFR component, to up-shift the shunt TFR components' set of resonant frequencies with respect to the series branch TFR components.
Abstract:
A method of fabricating a plurality of bulk acoustic wave (BAW) resonators on a single substrate, and the corresponding product, the BAW resonators having substantially different resonant frequencies, the method including the steps of: providing a substrate having an upper facing surface; depositing an isolation structure on the upper facing surface of the substrate; depositing a first metallic layer on the isolation structure, the first metallic layer serving as a bottom electrode; and depositing piezolayer material on the bottom electrode so as to have thicknesses corresponding to each of the different resonant frequencies, each different thickness located in a location where a resonator having a resonant frequency corresponding to the thickness is to be located. In one of several embodiments, the step of depositing piezolayer material on the bottom electrode itself includes the steps of: depositing piezolayer material to a thickness corresponding to the lowest frequency resonator; providing hard mask material over areas where the lowest frequency resonators are to be located; and removing the piezolayer material down to the thickness of the next higher frequency resonators. In some applications of the method, the isolation structure is an acoustic mirror, and the method further includes the step of providing the acoustic mirror, interposed between the substrate and the bottom electrode, according to a design that imparts to the acoustic mirror a desired reflection coefficient over a predetermined range of frequency including the substantially different resonant frequencies.
Abstract:
The present invention is a method for adjusting different resonant frequencies of a plurality of mechanical resonators formed on a common substrate, in a case where the resonant frequencies of the resonators are a function of each resonator thickness. According to this method the resonators are each formed with an etchable top electrode layer which includes a material having different etching properties as a topmost layer for each of the resonators having different resonant frequencies. By selectively etching these etchable layers one at a time in the presence of the others, one may adjust the resonant frequencies of each of the resonators without need to mask the resonators during the etching process. Associated with this method there is a resonator structure having a top electrode structure having a topmost layer having different etching characteristics for different resonators.
Abstract:
An array of thin film piezoelectric resonators are formed on a substrate and connected in parallel to form a single piezoelectric resonator with enhanced piezoelectric coupling. The array includes a first conductive layer positioned on the substrate and defining a first electrode, a plurality of columns of piezoelectric material positioned on the conductive layer and each defining a separate piezoelectric resonator, and a second conductive layer positioned on the plurality of columns and defining a second electrode. The columns are selectively deposited or deposited as a single layer and etched into columns.