Abstract:
An electrical combination including a driver drill capable of producing an average current draw of approximately 20-amps, a circular saw capable of producing an average current draw of approximately 20-amps, and a power tool battery pack operable to supply power to the driver drill and to the circular saw, the battery pack including a plurality of battery cells, the plurality of battery cells each having a lithium-based chemistry.
Abstract:
A battery pack includes first and second terminals, a battery unit electrically connected between the first and second terminals, the battery unit being configured to receive charging power, and being configured to output discharging power, and a power converter electrically coupled between the first terminal and the battery unit, the power converter being configured to convert the charging power to have a charging voltage corresponding to the battery unit, wherein the first and second terminals are configured to be electrically coupled to a generator and a starter motor.
Abstract:
A power reception control device provided in a power reception device of a non-contact power transmission system includes a power-reception-side control circuit that controls an operation of the power reception device, and a power supply control signal output terminal that supplies a power supply control signal to a charge control device, the power supply control signal controlling power supply to a battery. The power-reception-side control circuit controls a timing at which the power supply control signal (ICUTX) is output from the power supply control signal output terminal. The operation of the charge control device is compulsorily controlled using the power supply control signal (ICUTX).
Abstract:
A secondary battery includes a battery case configured subject to the configuration of a conventional 9V or 1.5V battery and a battery body and a battery charger mounted in the battery case. The battery charger controls the battery body for charging and voltage output, and provides a USB socket as charging interface and positive and negative electrodes as discharging interface. Thus, the secondary battery is connectable to a USB plug of a cell phone battery charger or computer for charging, and can be installed in an electric product like a conventional battery cell to provide DC power to the electric product. Under the provision of current detection function and voltage adjusting function, the 1.5V secondary battery can be connected in series or in parallel with one or a number of micro resistor-provided virtual batteries to output a voltage subject to its linking arrangement.
Abstract:
An electrical combination including a driver drill capable of producing an average current draw of approximately 20-amps, a circular saw capable of producing an average current draw of approximately 20-amps, and a power tool battery pack operable to supply power to the driver drill and to the circular saw, the battery pack including a plurality of battery cells, the plurality of battery cells each having a lithium-based chemistry.
Abstract:
A battery includes a battery housing containing a rechargeable cell for providing an output voltage and a charging circuit. The charging circuit is coupled to the rechargeable cell and includes a voltage converter to convert an input voltage to the charging circuit to a charging voltage to charge the rechargeable cell.
Abstract:
A battery pack includes electric cells connected in series or in parallel between first and second lines, each of the electric cells having a battery cell, a control circuit which performs authentication processing, a communication block which is connected to the control circuit and superimposes a series binary data string on a battery output of the battery cell, and a switching element controlled by the control circuit. The control circuit generates its address. The control circuit of each electric cell transmits the series binary data string including the address to a main body via the communication block and the first and second lines for authentication on each electric cell. The switching element is turned on when the authentication is successful, and charging or discharging is performed. The switching element is turned off when the authentication is unsuccessful, and charging or discharging is banned.
Abstract:
A system and method for battery protection. In some aspects, a battery pack includes a housing, a cell supported by the housing, a circuit supported by a flexible circuit board. The circuit is operable to control a function of the battery pack.
Abstract:
A protection circuit controls charging/discharging of a battery pack in both a high temperature region and a low temperature region. The battery pack is protected from the risk of firing, burning or explosion which occurs in a high temperature region, to secure its safety. Furthermore, the charging and discharging of the battery pack is controlled in a low temperature region, to prevent incomplete charging and to increase the battery capacity efficiency.
Abstract:
A battery pack for an electronic device comprises battery cells, a battery charging circuit, and an energy receiving element adapted to receive power from a planar inductive charging system. The energy receiving element has an inductance and a capacitor is connected to the energy receiving element and forms a resonant tank therewith. A diode rectifier and a DC capacitor are connected to the energy receiving element to provide a rectified DC voltage that can be fed from the energy receiving element to said battery charging circuit. The energy receiving element may comprise a soft magnetic sheet with a coil wound around its edges, or a coil formed on a printed circuit board, or a combination of the two. The energy receiving element may be formed integrally with the battery pack, or may be provided as a separate component that can be added to an existing battery.