Abstract:
A quantum-well photoelectric device, such as a quantum cascade laser, is constructed of monocrystalline nanoscale membranes physically removed from a substrate and mechanically assembled into a stack.
Abstract:
Quantum-cascade lasers are provided with an active section in which relaxation of carriers from a lower laser level is provided by three or more phonon-assisted transitions to levels within the active section whose energies are below the energy of the lower laser level. The gain region of the laser consists of alternating active and injector sections, with an injection barrier inserted between each injector section and the adjacent active section, and an exit barrier inserted between each active section and the adjacent injector section. The active section comprises a sufficient number of quantum wells separated by quantum barriers to produce the desired energy-level structure consisting of an upper laser level, a lower laser level, and at least three levels that have lower energies than the lower laser level, with the separation of adjacent energy levels below and including the lower laser level that are at least equal to the energy of the quantum well material's longitudinal optical phonon.
Abstract:
A quantum cascade laser 1, which generates infrared light or other light of a predetermined wavelength by making use of intersubband transitions in a quantum well structure, is arranged by forming, on a GaAs substrate 10, an AlGaAs/GaAs active layer 11 having a cascade structure in which quantum well light emitting layers and injection layers are laminated alternately. Also, at the GaAs substrate 10 side and the side opposite the GaAs substrate 10 side of active layer 11, is provided a waveguide structure, comprising waveguide core layers 12 and 14, each being formed of an n-type GaInNAs layer, which is a group III-V compound semiconductor that contains N (nitrogen), formed so as to be lattice matched with the GaAs substrate 10, and waveguide clad layers 13 and 15, each formed of an n++-type GaAs layer. A quantum cascade laser, with which the waveguide loss of generated light in the laser is reduced, is thereby realized.
Abstract:
An apparatus and methods for an optically pumped laser that has a cascade of light-emitting interband transitions are disclosed. The apparatus disclosed contains multistep interband cascade regions able to generate a plurality of photons for a pump photon absorbed from an optical pump source. The methods disclosed teach how to produce a plurality of photons for a pump photon absorbed from an optical pump source.
Abstract:
A quantum cascade laser is provided that is constituted as a superlattice device configured by repeatedly overlaying AlSb or GaAlSb layers and GaSb layers and forming electrode layers at the opposite ends thereof, wherein the thickness of the GaSb layers constituting quantum wells for performing stimulated emission of light is defined so that the energy difference formed between the ground state and the first excited state in the GaSb layers becomes the LO phonon energy of GaSb. The quantum cascade laser lases at lower frequency than conventionally and has a structure that is easy to fabricate.
Abstract:
A buried heterostructure quantum cascade laser structure uses reverse biased junction to achieve current blocking. Doping and ridge width of the structure may be adjusted to provide effective mode discrimination.
Abstract:
An apparatus (8, 14) for wavelength shifting light from a first frequency ν1 to a second frequency ν2 is provided in the form of a semiconductor intersubband laser (8) lasing at its intersubband frequency ν3. The output light is wavelength shifted to a frequency ν2=ν1+nν3, where n is a non-zero integer ( . . . , −2, −1, 1, 2, . . . ). The wavelength shifted light ν2 may be amplitude modulated and/or frequency modulated to impart information upon it. The wavelength shifting is a coherent process allowing for the possibility of coherent communication techniques to be used.
Abstract translation:以半导体子带间激光器(8)的形式提供用于将光从第一频率nu 1> 1波长移位到第二频率nu 2 <2>的装置(8,14) 在其子带间隙nu 3 3处发射激光。 输出光被波长移位到频率nu 2 n N n N n N n N n N 3,其中n是非零整数(...)。 。,-2,-1,1,2,...)。 波长偏移光nu 2 2可以被幅度调制和/或频率调制以在其上传递信息。 波长偏移是一个相干过程,允许使用相干通信技术的可能性。
Abstract:
An unipolar organic injection laser in which electrically-stimulated intraband transitions result in lasing. An active region includes at least one organic injector layer and at least one organic emitter layer. Each organic emitter layer has a first energy level and a second energy level on a same side of an energy gap defined by a conduction band and a valance band. Charge carriers are injected through the organic injector layer into the first energy level of the organic emitter layer when a voltage is applied across active region. The difference in energy between the first and second energy levels produces radiative emissions when charge carriers transition from the first energy level to the second energy level. Population inversion is maintained between the first and second energy levels, producing stimulated emission and lasing.
Abstract:
A unipolar semiconductor laser is provided in which an active region is sandwiched in a guiding structure between an upper and lower cladding layer, the lower cladding layer being situated on a semiconducting substrate. The unipolar semiconductor laser comprises a raised ridge section running from end to end between end mirrors defining the laser cavity. The ridge section aids in optical and electrical confinement. The ridge waveguide is divided in a plurality of cavity segments (at least two). Lattice structures can be arranged to these cavity segments. Each cavity segment is in contact with upper metallic electrodes. A metallic electrode coupled to the bottom surface of the semiconducting substrate facilitates current injection through the device.
Abstract:
A semiconductor laser and light emitting device is defined. The device comprises an electron injector and an active region adjacent to the electron injector. The active region includes at least one deep quantum well with barrier layers adjacent to either side of the quantum well or wells such that electrons injected from the electron injector into a high energy level of the quantum well relax to a lower energy level with the emission of a photon and are transmitted out to a region beyond the last barrier layer of the active region. The electron injector includes quantum well layers. The bottom of each deep quantum well or wells in the active region is lower in energy than the bottoms of the quantum well layers in the electron injector. The device may further comprise at least two stages wherein each stage contains an electron injector and an active region. The stages are separated by semiconductor layers that allow the transfer of electrons from the active region of one stage to the electron injector of the next stage.