Abstract:
A method for retrofitting a fossil-fueled power station having a multiple-casing steam turbine with a carbon dioxide separation device is provided. The maximum flow rate of the steam turbine is adjusted to the process steam that is to be removed for the operation of the carbon dioxide separation device and the carbon dioxide separation device is connected via a steam line to an overflow line that connects two steam turbine casings.
Abstract:
A combustion method applied to a water-tube boiler and a regenerator of an absorption-type refrigerator includes a concentration ratio adjusting step of adjusting a concentration ratio of nitrogen oxides, carbon monoxide, and oxygen in a gas from a gas generation source to a predetermined reference concentration ratio, and a hazardous-substance decreasing step of decreasing nitrogen oxides, using an oxidation catalyst having characteristics of decreasing the concentrations of nitrogen oxides and carbon monoxide on a secondary side to substantially zero when the concentration ratio on a primary side is set to be a reference concentration ratio, in which the concentration ratio adjusting step detects the concentration of oxygen on the secondary side of the oxidation catalyst to control the concentration ratio so that a detected oxygen concentration becomes a set oxygen concentration substantially close to zero. According to the combustion method, the emission amount of nitrogen oxides can be decreased to close to zero as much as possible, and the emission amount of carbon monoxide can be decreased to a permissible range. Further, the control of a concentration ratio can be performed stably by detecting the concentration of oxygen.
Abstract:
A method for capturing carbon dioxide from a flue gas includes (i) removing moisture from a flue gas to yield a dried flue gas; (ii) compressing the dried flue gas to yield a compressed gas stream; (iii) reducing the temperature of the compressed gas stream to a temperature T1 using a first heat exchanger; (iv) reducing the temperature of the compressed gas stream to a second temperarature T2 using a second heat exchanger stream, where T2
Abstract:
There is provided a power plant in which a fossil fuel is used to generate power. An exemplary power plant includes a generator and a turbine that drives the generator, which generates electricity. Also included is a separator with which carbon dioxide is separated out of exhaust gas of the power plant. The power plant further includes a compressor with which the separated carbon dioxide is liquefied, the compressor being coupled to an electric drive.
Abstract:
An air separation unit is integrated with a power generating plant to improve the efficiency of power generation. The methods and systems improve the efficiency of power generation by utilizing liquid nitrogen from the air separation unit as the working fluid in a turbine. The liquid nitrogen is pressurized while in the liquid state. After warming the pressurized nitrogen stream by cooling the air for the air separator unit, the compressed nitrogen is expanded in a turbine to perform work. After expansion, the nitrogen is vented to ambient air. The nitrogen in its pressurized state can be used for energy storage and/or for smoothing out power demand on a power grid.
Abstract:
A system for optimizing and controlling a circulating fluidized bed combustion (FBC) system (7) and an air pollution control (APC) system (9) includes a controller (205, 305, 406) and an optimizer (210, 310). The controller (205, 305, 406) is connected to the FBC system (7) and/or the APC system (9). The optimizer (210, 310) is connected to the controller (205, 305, 406). The optimizer (210, 310) provides an optimized setpoint (220, 320, 420) to the controller (205, 305, 406) based on an economic parameter (235, 335, 435) and system outputs (230, 330) from the FBC system (7) and the APC system (9). The controller (205, 305, 406) provides an optimized input (215, 315) to the FBC system (7) and/or the APC system (9) based on the optimized setpoint (220, 320, 420) from the optimizer (210, 310) to optimize operation of the FBC system (7) and/or the APC system (9).
Abstract:
A water recirculation system for a steam power plant includes a tapoff line which receives water from a downcomer, and an economizer link which receives water from the tapoff line and transports the water to an economizer.
Abstract:
A passive system for recovering energy and nitrogen oxides from flue gas produced by a boiler, and which employs a particular arrangement of economizer surface to ensure that the temperature of the flue gas entering a selective catalytic reduction (SCR) reactor is maintained within a required range over a wide range of boiler loads.
Abstract:
The present invention is a method for reducing the slagging and fouling of the surfaces of the waterwalls, firebox, superheater, and reheater of the furnace of a coal-fired steam boiler. The process reduces the firebox exit temperature to below the specific ash melting temperature by injecting the following, either alone or in combination, into ports located in the upper section of the firebox: recirculated flue gas from downstream of the electrostatic precipitator, atomized water, or a sorbent water slurry. All of these materials have a lower temperature than the main flue gas or require additional heat for evaporation. Mixing these materials with the main flue gas from the furnace will not affect the coal combustion process, yet will reduce the temperature of any fly ash particles in the main flue gas to below the specific ash fusion temperature, and thus, prevent slagging and fouling within the furnace.
Abstract:
A system for maintaining an optimal flue gas inlet to a boiler mounted SCR assembly in the flue of the boiler is accomplished by mixing the normal inlet feedwater to an economizer of the boiler with near saturation water from downcomers of the boiler to thereby raise the temperature of the flue gas passing across the economizer and raising the SCR inlet to the desired optimal SCR operation temperature.