Abstract:
The present invention pertains to a locking and unlocking mechanism, which is equipped with an electromagnet (1) and is used preferably to embody a key and/or shift lock function in motor vehicles. Its basic object is to design such a mechanism such that the generation of noise during the transition from one state into the other is reduced compared with prior-art solutions. To accomplish the object, a pulsating voltage in the form of a direct voltage-rated pulse width signal (PWM voltage) is sent to the electromagnet (1). The effective value of the PWM voltage is increased over at least three voltage pulses from an off-load voltage value to a preset final voltage value at the beginning of a phase of energization and it conversely drops, again over at least three voltage pulses, to the off-load voltage value at the end of the phase of energization, in a time-controlled manner by means of a circuit unit (2) associated with a pulse width modulator (3).
Abstract:
An automatic transmission of a motor vehicle is provided that can be in at least one secured state and one unsecured state has a pivotable selector lever for selecting different gears and/or gear selections and has a first blocking mechanism, which can block the pivoting movement of the selector lever. The first blocking mechanism has a displaceable blocking element and a stationary blocking contour for engaging the blocking element and can prevent the selector lever from being pivoted by the blocking element engaging the blocking contour. A second blocking mechanism has a toggle lever, which is in contact with a stop in a stretched-out blocking position and prevents the release of the first blocking mechanism and makes possible the unlocking of the first blocking mechanism in the release position. A release mechanism releases the toggle lever from the stretched-out blocking position. The toggle lever is arranged such that one leg of the toggle lever acts on the blocking element of the first blocking mechanism.
Abstract:
The present invention pertains to a locking and unlocking mechanism, which is equipped with an electromagnet (1) and is used preferably to embody a key and/or shift lock function in motor vehicles. Its basic object is to design such a mechanism such that the generation of noise during the transition from one state into the other is reduced compared with prior-art solutions. To accomplish the object, a pulsating voltage in the form of a direct voltage-rated pulse width signal (PWM voltage) is sent to the electromagnet (1). The effective value of the PWM voltage is increased over at least three voltage pulses from an off-load voltage value to a preset final voltage value at the beginning of a phase of energization and it conversely drops, again over at least three voltage pulses, to the off-load voltage value at the end of the phase of energization, in a time-controlled manner by means of a circuit unit (2) associated with a pulse width modulator (3).
Abstract:
This invention is an improved park position locking system for controlling the conditions for removing an automatic transmission gearshift 90 from a PARK position. An electronic system controller 30 and the transmission controller 16 are engaged to a common data bus 18. Vehicle control system 10 comprises the electronic system controller (ESC) 30, which is the primary component of a vehicle electronic control system. ESC 30 manages and communicates with a number of vocational controllers disposed on a vehicle 13 and executes a load management program which oversees the total load imposed on the vehicle electrical system and power train by various accessories installed on the vehicle 13. Such communication is by a standard communication protocol that may be the SAE J1939 protocol over the common data bus 18. The ESC 30 is programmed to ensure that an operator of the vehicle may not move the gearshift 90 out of a PARK position without first depressing a service brake pedal. The ESC 30 prevents or allows movement of the gearshift through a solenoid operated locking mechanism engaged to the gearshift 90.
Abstract:
A shift device including a key cylinder and a shift lever is disclosed. The key cylinder is located adjacent to the shift lever. The key cylinder receives a key corresponding to the key cylinder. When the key is located at the ON position, the key cylinder generates an engine driving signal to an engine ECU. A stopping mechanism is located between the key cylinder and the shift lever for selectively stopping the movement of the shift lever depending on the selected key position.
Abstract:
A shifter system for shifting a transmission on a vehicle includes a shifter having a manually-operated shift lever movable between various gear positions, an electrical sensing device on the shifter for sensing positions of the shift lever, and a controller electrically connected to the sensing device and constructed to control shifting of a transmission based on signals from the sensing device indicative of the position of the shift lever. The controller and the sensing device as a system are capable of sensing speed of movement of the shift lever and the controller is programmed to change control of the shifting of the transmission in accordance therewith. In one form, the sensing device includes one of a continuous output potentiometer, a discrete output potentiometer, a membrane potentiometer, and a deformable variable-resistance potentiometer.
Abstract:
An external electronic shift system is provided that is adapted to electronically shift an existing automatic transmission for a vehicle. The automatic transmission includes gearing movable to a plurality of different gear positions, and further includes an actuator rod connected to the gearing that is rotatable to selectively shift the gearing between the gear positions. A control unit is programmed to receive electrical signals from a shifter and generate signals to control shifting of the transmission. A stepper motor unit is mechanically attached to the actuator rod and electrically connected to the control unit. The stepper motor unit is configured to selectively rotate the actuator rod to shift the transmission in response to the signals received from the control unit. Specifically, the stepper motor unit includes a housing, a first rod rotatably supported on the housing and having an end configured to matingly engage the male end of the actuator rod, a second rod rotatably supported on the housing, intermeshing gears on the first and second rods for providing a first set of angular positions to the first rod based on a second set of angular positions of the second rod, and a stepper motor connected to the second rod for moving the second rod selectively to each one of the second set of angular positions.
Abstract:
A column shift device for an automatic transmission includes a bracket, and a shift piece turnably connected to the bracket through a first pivot. A shift lever is turnably connected to the shift piece through a second pivot located on a plane substantially perpendicular to the first pivot. A shift link is pivoted on the bracket for operation in association with the turning movement of the shift lever about the first pivot to control the automatic transmission. In the device, a spherical joint member is slidably fitted over an outer periphery of an arm shaft fixedly provided on the shift piece and is slidably engaged in a rectilinear guide groove defined in a shift link. When the shift piece is turned about the first pivot, the joint member is moved rectilinearly along the guide groove. Thus, even if the turning angle of the arm shaft is constant, the turning stroke provided to the shift link by the joint member can be increased.
Abstract:
An arrangement for locking a selector mechanism can be moved by a manual selector element, into, among others, positions P and R and is usable for an automatically operating change-speed gearbox. A servomotor can be moved by auxiliary force into one end position, in which locking dogs for locking the manual selector element in the P-position are disengaged, and by spring force into its other end position, in which locking dogs for blocking the movement of the manual selector element into the R-position are disengaged.
Abstract:
A motor vehicle automatic gear-change device in a change-speed gearbox is connected to a manual selector lever which is arranged in the region of the driver's seat. A mechanical interlock, which can be actuated by an electromagnet, can be caused to act on the selector lever to prevent changing into the reverse gear.