Abstract:
A thrust roller bearing cage (11) of the present invention is included in a thrust roller bearing (20) and includes a plurality of pockets (21) accommodating rollers (13). The thrust roller bearing cage (11) includes: a radially outer area bent portion (41) formed by bending the cage (11) inward in a radial direction along an annular groove formed at a position radially outside the pockets (21); and projecting portions (44) that are formed in a tip end of the radially outer area bent portion (41) at positions aligned with the pockets (21) and project inward in the radial direction beyond radially outer edges of the pockets (21) so as to contact end faces (16) of the rollers (13) accommodated in the pockets (21). A trace (29) of the groove is left at a position along which the cage is bent.
Abstract:
A thrust roller bearing cage (11) of the present invention is included in a thrust roller bearing (20) and includes a plurality of pockets (21) accommodating rollers (13). The thrust roller bearing cage (11) includes: a radially outer area bent portion (41) formed by bending an area located radially outside the pockets (21) inward in a radial direction to a tilt angle of less than 45°; and projecting portions (44) that are formed in a tip end of the radially outer area bent portion (41) at positions aligned with the pockets (21) and project inward in the radial direction beyond radially outer edges of the pockets (21) so as to contact end faces (16) of the rollers (13) accommodated in the pockets (21).
Abstract:
This sliding bearing comprises a pair of semicircular half bearings formed into a cylindrical shape by bringing both circumferential ends thereof into contact with each other. The axial width of the half bearings is narrower in both circumferential ends and the circumferential center, and wider in the quarter parts located therebetween. During manufacturing of the half bearings, finishing by cutting processing is first performed on the parts of a flat-plate material which after formation are to become the two axial-direction end faces and the two circumferential-direction end faces of the half bearings, and thereafter, the flat-plate material is deformed into a semicircle.
Abstract:
A bearing component can include a metal substrate layer, shaped so as to include a generally annular sidewall having a central axis and defining a first and a second opposite ends in an axial direction; and a radial flange bent so as to extend in a radial direction from one of the first and second ends of the generally annular sidewall, wherein, in a pre-shaped state, the metal substrate layer includes at least two flange segments extending in the axial direction and defining a gap extending toward an opening.
Abstract:
Disclosed in a method for manufacturing a drive shaft which comprises forming a first shaft unit by shrinking one side of a metallic pipe which has a uniform first strength; decreasing the thickness of an intermediate portion of the metallic pipe by drawing the intermediate portion of the metallic pipe which is integral with the first shaft unit; forming at an inner side surface of the other side of the metallic pipe a strength decrease unit which has a second strength smaller than the first strength, by heat-treating by a predetermined distance the inner side surface of the other side being opposite to one side of the metallic pipe; and forming a second shaft unit without transforming any portion of the intermediate portion by shrinking the metallic pipe which has the strength decrease unit, wherein the second shaft unit is formed by applying compression force to a portion where the strength decrease unit in the metallic pipe is formed, in a predetermine direction being vertical with respect to the axial direction of the metallic pipe.
Abstract:
This disclosure relates to bushings produced with adapted dovetails for production on a carrying web of a progressive stamping machine at a plurality of stations. The bushing includes a regular shape male dovetail inserted into an irregular shape crenellated female opening at the conclusion of a plurality of operations at stations on a progressive stamping machine. Once the bushing is bent in shape, in a subsequent step, the regular shape male dovetail is punched to lock in place into the irregular shape crenellated female opening.
Abstract:
A tolerance ring with functional layers has an annular band and an elastomeric layer. The assembly also may have a low friction layer, which may be bonded, calendared or laminated thereto. The low friction material may completely encapsulate the annular band.
Abstract:
A roller bearing retainer (13) includes a pair of annular ring parts (14) and a plurality of column parts (15) each including a column center part (16) provided in an axial center region so as to be positioned relatively on the radial inner side, a pair of column end parts (17) provided in axial end regions so as to be positioned relatively on the radial outer side, and a pair of column sloped parts (18) positioned between the column center part (16) and the pair of column end parts (17), and connecting the pair of ring parts to each other. A thickness of each part of the column center part, the pair of column end parts, and the pair of column sloped parts is smaller than a thickness of a boundary part between the adjacent parts.
Abstract:
A bushing has a body with a cylindrical shape, an axis, and a plurality of dimples formed in the body extending in a radial direction with respect to the axis. The body is electrically conductive. A sliding layer that is electrically non-conductive is formed on at least a portion of the body. A coating that is electrically non-conductive is formed on at least a portion of the body. The bushing has an uninstalled configuration where the bushing is electrically non-conductive, and an installed configuration where the bushing is electrically conductive.
Abstract:
A flanged bush for plain bearings having at least one flange formed thereon having axially facing inner and outer surfaces and including at least one metallic layer. The flange includes material-displacing recesses impressed axially into said flange in said metallic layer at at least two points distributed over said flange in a circumferential direction.