Abstract:
The present disclosure is related to unmanned aerial vehicles or drones that have a capability of quickly swapping batteries. This may be accomplished even as the drone continues to fly. A drone consistent with the present disclosure may drop one battery and pickup another using an attachment mechanism. Attachment mechanisms of the present disclosure may include electro-magnets, mechanical actuators, pins, or hooks. Systems consistent with the present disclosure may also include locations where replacement batteries may be provided to aircraft via actuation devices coupled to a physical location.
Abstract:
A manned or unmanned aircraft has a main body with a circular shape and a circular outer periphery. One or more rotor blades extend substantially horizontally outward from the main body at or about the circular outer periphery. In addition, one or more counter-rotation blades extend substantially horizontally outward from said main body at or about the circular outer periphery, but vertically offset from the main rotor blades. The rotor blades and counter-rotation blades can be folded upward into a storage position. In addition, the unmanned aircraft can have solar panels positioned about the top housing and fuselage of the aircraft.
Abstract:
An apparatus and method for replacing a power source element is provided. The apparatus includes a multiple compartment housing attached to a vehicle, power source elements, a controller, and a communications interface. The power source elements are placed within receptacles of the multiple compartment housing. Each power source element is electrically connected to an input power coupler for electrical connection to the vehicle such that each power source element is configured to supply power to the vehicle independently without requiring power supplied by any other power source element. The controller is configured to monitor a power level of each power source element and generate an associated power level reading. The communication interface is configured to retrieve each associated power level reading from the controller and to an external system.
Abstract:
Short takeoff and landing aircraft are disclosed. An example fixed wing aircraft includes a primary power source to provide power to a propulsion unit, a secondary power source to provide power to the propulsion unit, and a detachable power coupling to transfer power to the secondary power source from a source external to the fixed wing aircraft during takeoff.
Abstract:
The present invention discloses an unmanned aerial vehicle and a battery thereof. The battery includes a battery body and a shell disposed on one end of the battery body. The shell has a clamp button disposed on the side opposite the unmanned aerial vehicle. One end of the clamp button is fixed on the shell and the other is used for detachably connecting with the unmanned aerial vehicle. The clamp button makes the battery detachably connect with the main body of the unmanned aerial vehicle be possible and it is very convenient for changing the battery.
Abstract:
A virtual site survey method at a cell site utilizing three-dimensional (3D) models for remote performance includes obtaining a plurality of photographs of a cell site comprising one or more of a cell tower and one or more buildings and interiors thereof; subsequent to the obtaining, processing the plurality of photographs to define a three dimensional (3D) model of the cell site based on one or more objects of interest in the plurality of photographs; and remotely performing a site survey of the cell site utilizing a Graphical User Interface (GUI) of the 3D model to collect and obtain information about the cell site, the cell tower, the one or more buildings, and the interiors thereof.
Abstract:
In one example, a long endurance airship system includes a first combined airship with a payload airship and a first logistics airship. The first combined airship is configured for stationkeeping at a predetermined station during meteorological conditions with wind speeds below a predetermined threshold. The airship system also includes a second combined airship which is a reconfiguration of the first combined airship and includes the payload airship and a second logistics airship. The second combined airship is configured for stationkeeping at the predetermined station in all meteorological conditions, including meteorological conditions with wind speeds above the predetermined threshold.
Abstract:
A capturing hook for engaging a cable during capture and release of an aerial vehicle may comprise a first and second gate pivotally supported at their first ends by a base portion and each being movable between a closed position and an open position, but spring-biased to the closed position. The capturing hook may further include a latch device comprising a movable locking part biased by a return spring to a locked position to lock the second gate in the closed position.
Abstract:
Methods of manufacturing and operating a solar powered aircraft having segmented wings that can be reconfigured during flight to optimize collection of solar energy are described. The aircraft have rigid construction that is resistant to inclement weather and is configured to rely on free flight control at high altitude and under conventional conditions, thereby providing flight duration in excess of 2 months. The aircraft is particularly suitable for use as part of a telecommunications network.
Abstract:
A system and method for providing power to and monitoring the energy usage includes at least one electrical control unit having an unmanned vehicle, at least one electrical control unit, a sensor enabled to monitor a given condition; a power source; a processor configured to be in communication with the at least one sensor and said power source, said processor further configured to manage communications with said management system; an unmanned vehicle releasibly coupled to said electrical control unit, said processor being adapted to release said unmanned vehicle to enable the unmanned vehicle to separate from said electrical control unit, wherein said sensor is enabled to monitor at least one of the following: voltage, current, real power, apparent power, reactive power, frequency, total harmonic distortion, arc fault, plug loads, power factor, GFI, AFI, light, temperature, humidity, methane, carbon monoxide, motion, thermal, occupancy, radio frequency, audio, video, infrared, and combinations thereof and wherein said unmanned vehicle can travel to various locations.