Abstract:
An axle link for a motor vehicle includes a body-side connecting element and a wheel-side connecting element. The connecting elements are connected to one another by a rod element, comprised of a metal rod and a reinforcement casing. The metal rod is made of a ductile material and is anchored in the reinforcement casing at the connecting elements. The reinforcement casing is made of a brittle material and has a predetermined breaking point at a longitudinal position between the connecting elements.
Abstract:
A vehicle front suspension includes a lower suspension support structure, a transverse link, a steering knuckle and a lower knuckle breakaway structure. The transverse link has an inboard side and an outboard side, with the inboard side being attached to the lower suspension support structure. The steering knuckle is pivotally coupled to the outboard side of the transverse link. The lower knuckle breakaway structure is formed on one of the transverse link and the steering knuckle to release the steering knuckle from the transverse link upon application of a prescribed rearward directed force on the vehicle front suspension outboard of the lower suspension support structure.
Abstract:
A ball joint, which has high reliability and reduced weight, is provided. A ball joint includes: a ball stud having a columnar stud portion and a ball portion which has a spherical side surface and a center positioned on an axis of the stud portion; a ball seat which is made of a resin and has a spherical recess portion into which the ball portion is relatively rotatably and slidably fitted; a housing which is made of a resin and holds the ball seat therein; and a support bar which is integrally formed with the housing, wherein the support bar has a bar portion which is a center portion extending along an axis of the support bar.
Abstract:
A ball joint, which has high reliability and reduced weight, is provided. A ball joint includes: a ball stud having a columnar stud portion and a ball portion which has a spherical side surface and a center positioned on an axis of the stud portion; a ball seat which is made of a resin and has a spherical recess portion into which the ball portion is relatively rotatably and slidably fitted; a housing which is made of a resin and holds the ball seat therein; and a support bar which is integrally formed with the housing, wherein the support bar has a bar portion which is a center portion extending along an axis of the support bar.
Abstract:
A vehicle having a suspension system that supports a vehicle frame has a suspension interlock for governing the distance that the suspension system may move away from the frame during a vehicular rear impact event, thereby channeling impact forces through the suspension system and into the vehicle frame. A flexible member attaches to the vehicle frame and to the suspension system and acts as a tether to maintain the position of the suspension system relative to the frame. Alternatively, the suspension interlock may be a u-shaped bar mounted to the vehicular frame that interacts with a pin that is mounted to the suspension system. The pin resides within the confines of the u-shaped bar to maintain the position of the suspension system relative to the frame. Alternatively, a hooked plate may be used instead of a pin.
Abstract:
A connector piece for the articulated connection of structural elements of a chassis of a motor vehicle. The connector piece has a main body, formed from at least one metal sheet, which has at least one bearing or joint and includes a housing connected to the main body and an inner part which is fitted within an inside space of the housing and can move relative to the housing. The housing comprises a housing portion that surrounds the inside space and includes at least two sheet-metal strips that are arranged adjacent one another, in a longitudinal direction, and are bent between their ends, in opposite directions transverse to the longitudinal direction, such that the metal strips partially surround the inside space on different sides.
Abstract:
A front structure for a vehicle comprises a power unit mounted at a front end of the vehicle, a steering gear box provided in front of or behind the power unit in the vehicle, and a suspension member supporting the steering gear box, the steering gear box being situated at a bottom surface of the suspension member so as to move beneath the power unit when the front end of the vehicle is deformed due to a frontal collision.
Abstract:
A suspension arm for a vehicle wheel suspension having an intended breakpoint is described. The suspension arm is provided on a first end with a stub axle for receiving a vehicle wheel, and on at least one second end with the hole for receiving a fastener for fastening a bearing to connect the suspension arm to a subframe of a vehicle body. The suspension arm has an intended breakpoint designed to fail because of strain overload due to deformation during an accident, and the intended breakpoint is designed in such a way that the fastener breaks out of the hole.
Abstract:
A vehicle steering linkage member (40) comprises a socket (42), and a stud (10) having a ball end portion (48) received in the socket and supported for pivotal movement relative to the socket. The stud (10) has a longitudinal axis (52), with a shank portion (50) projecting from the socket (42) and centered on the axis. The shank portion (50) of the ball stud (10) includes a predetermined weakened portion (70). The predetermined weakened portion (70) buckles under a predetermined amount of force. The predetermined weakened portion (70) may have a cross-sectional configuration not centered on the axis (52).
Abstract:
A lower arm assembly comprises a lower arm, a front fluid-filled bushing, a rear fluid-filled bushing, and a fluid transferring pipe extending between the bushings. Each of the front and rear bushings has an outer pipe, an inner pipe, and a shock absorbing member. A fluid chamber is formed within the shock absorbing member. The fluid transferring pipe connects the fluid chambers of the front and rear bushings together such that the fluid can transfer between the fluid chambers. Therefore, with the lower arm assembly according to the embodiment of the present invention, riding comfort and cornering stability can be simultaneously improved.