Abstract:
Method, apparatus and systems for detecting motion of an object based on a received wireless signal include comparing a received wireless signal to an adaptive noise immunity threshold, if the received wireless signal satisfies the adaptive noise immunity threshold. The detecting motion is based at least in part on a comparison between a determined multipath amount of the received wireless signal and a reference multipath amount, and further by adjusting the adaptive noise immunity threshold from a first level to a second level prior to the comparing of the received wireless signal to the noise immunity threshold, where the second level is higher than the first level.
Abstract:
Methods, systems, and devices are described for wireless communication. An example method includes receiving, by a first wireless communication device having a plurality of antennas disposed at a localized position, a plurality of fine timing management (FTM) messages from a second wireless communication device. The example method includes transmitting, by the first wireless communication device, a plurality of FTM responses to the second wireless communication device. Each of the plurality of FTM responses may be transmitted using a different antenna of the first wireless communication device. The example method also includes estimating a range between the first wireless communication device and the second wireless communication device based at least in part on the plurality of FTM messages.
Abstract:
This disclosure includes systems and methods for determining the location of each of a plurality of STAs of a WLAN where an AP measures the round-trip time (RTT) and the angle of arrival (AOA) to each STA from implicit packet exchange, such as data frame and ACK frame. The AP may then report the RTT and AOA measurements to each STA using a dedicated beacon information element (IE) which multicasts RTT and AOA measurements to the STAs. By employing an additional parameter, namely, angle of arrival AOA, a single AP may compute the two-dimensional location of each associated STA. Further, another beacon IE may multicast mapping of the AIDs to MAC addresses so that the associated STAs can understand such mapping for STAs in a network so that one STA may know the location of other STAs. Encryption may be employed to achieve privacy.
Abstract:
A method and apparatus for broadcasting short interframe space information to aid in determining a round trip time are provided. The round trip time is used as an aid in locating nodes within a WiFi or WLAN network. The method begins with capturing a time of transmission of a frame by a transmitting station. The receiving station then captures the time of arrival of the frame just sent by the transmitting station. The receiving station replies with a received frame message and the time of departure is captured. The transmitting station then captures the time of arrival of the received frame message. The captured arrival and departure times of the frame and the received frame message allow the round trip time to be computed. The RTT may then be included as part of a network message.
Abstract:
A TOA positioning system can be implemented that employs a calculated initial location of a wireless network device. For each of a plurality of reference wireless network devices, a distance between the wireless network device and the reference wireless network device is determined based, at least in part, on a round trip transit time between the wireless network device and the reference wireless network device. An initial location of the wireless network device can be calculated based, at least in part, on a location of each of the plurality of reference wireless network devices. A location of the wireless network device can be estimated based, at least in part, on the calculated initial location, the distance to each of the reference wireless network devices, and an initial distance calibration constant.
Abstract:
Embodiments described herein address these and other issues by providing radio frequency (RF) sensing to determine the status of a driver or other occupant of the vehicle. RF sensing may be provided by existing radios of a vehicle, such a Wi-Fi transceiver, and may therefore provide RF sensing functionality to a vehicle with little added cost. RF sensing can be leveraged to implement safety features such as detecting an unattended child or pet in a vehicle, detecting driver alertness, and the like.
Abstract:
A method for wireless communication performed by a head-mounted user equipment (UE), the method includes determining a first spatial relationship between an eye of a human user of the head-mounted UE and physical transmission and reception ports of the head-mounted UE; based on the first spatial relationship, determining a second spatial relationship between a plurality of radio frequency (RF) beam directions of the head-mounted UE and the eye of the human user; selecting a first RF beam direction from among the plurality of RF beam directions based at least in part on the second spatial relationship with respect to the first RF beam direction; and transmitting or receiving RF radiation using a first RF beam conforming to the first RF beam direction.
Abstract:
Differing operations of a wireless communication device benefit from different antenna configurations, such as for positioning, where closely spaced antennas are desirable, and data communication, where antenna diversity is desirable. A device is configured to receive a request for receive a request for determining a position of a user equipment (UE), select one of a first plurality of antennas or a second plurality of antennas for determining the position of the UE, receive wireless signals using the selected first plurality of antennas or the second plurality of antennas, and determine the position of the UE based at least in part on the received wireless signals.
Abstract:
In some implementations, a method may comprise obtaining channel state information (CSI) data corresponding to a set of RF signals received by one or more receiving devices, wherein: the set RF signals comprises two or more reflected RF signals successively received by the one or more receiving devices after being reflected from a person, and the two or more reflected RF signals are received by the one or more receiving devices over a period of time. The method may further comprise determining an identity of the person based at least in part on an observed gait of the person and an observed shape of the person, wherein the observed gait of the person and the observed shape of the person are determined based at least in part on the CSI data. The method may further comprise outputting an indication of the determined identity of the person.
Abstract:
A mobile device is disclosed. The mobile device may receive one or more wireless local area network (WLAN) signals. The mobile device may determine Channel State Information (CSI) data from the one or more WLAN signals. The mobile device may determine one or more environmental characteristics associated with an environment of the mobile device based on the CSI data. The mobile device may send information indicative of the one or more environmental characteristics to a location server (LS), or determine a position of the mobile device based at least in part on the one or more environmental characteristics, or any combination thereof.