Abstract:
Apparatuses, methods, and devices for wireless communication. One aspect of the subject matter described in the disclosure provides a method of selecting one of a plurality of antennas. The method includes receiving, at a first antenna, a first training field of a training frame. The method further includes receiving, at a second antenna, a second training field of the training frame. The method further includes selecting one of the first and second antennas based on at least one training field.
Abstract:
Systems, methods, and devices for wireless communication are provided. In one aspect, an apparatus for wireless communication is provided. The apparatus includes a processor configured to generate a packet for transmission via a wireless signal. The packet is generated for transmission over a bandwidth of 1 MHz using at least one orthogonal frequency-division multiplexing (OFDM) symbol. The apparatus further includes a transmitter configured to transmit the packet via the wireless signal having unique power spectral density characteristics.
Abstract:
Systems, methods, and devices for wireless communication. In one aspect, an apparatus for wireless communication is provided. The apparatus includes a receiver configured to receive a wireless signal comprising a packet. At least a portion of the wireless signal is configured to be received over a bandwidth lower than or equal to 1.25 MHz. The packet is formed from at least one orthogonal frequency-division multiplexing (OFDM) symbol comprising thirty-two tones. The thirty-two tones correspond to frequency subcarriers within the bandwidth. The thirty-two tones of the at least one OFDM symbol are allocated as: twenty-four data tones, two pilot tones, five guard tones, and one direct current (DC) tone. The apparatus includes a processor configured to evaluate the wireless signal. The processor includes a transform module configured to convert the at least one OFDM symbol into a frequency domain signal using a thirty-two point mode.
Abstract:
Systems, methods, and devices for communicating data in a wireless communications network are described herein. In some aspects, a receiver of a relay is configured to receive a relay initiator frame and a data frame. A transmitter of the relay is configured to transmit an amplified version of the data frame at a same or substantially same time as a time that the data frame is received if the relay initiator frame is received prior to the data frame.
Abstract:
A method and apparatus for tracking amplitude and phase of a received low frequency signal comprising a walking pilot signal is disclosed, wherein the pilot signal changes in frequency a number of times according to a sequence that repeats. The design includes initializing a FIFO buffer and summing estimated channel power over the sequence to determine an initial total power. The design also includes, for a new received symbol, determining an updated power estimate for the new received symbol, placing the updated power estimate in the FIFO buffer, and removing a least current value from the FIFO buffer, and estimating amplitude of the signal using a sum of all updated power estimates in the FIFO buffer divided by the initial total power. The design may further include determining a delta phase value using maximum ratio combining scaled with a scaling factor.
Abstract:
This disclosure provides methods, devices and systems for wireless communication, and particularly, for generating or receiving a multi-generation physical layer protocol data unit (PPDU). The multi-generation PPDU may concurrently include a first generation-specific preamble based on a first generation of a wireless communication specification (such as that defined by the Institute of Electrical and Electronics Engineers (IEEE) 802.11 family of standards) and a second generation-specific preamble based on a second generation of the wireless communication specification in a same transmission. The generation-specific preambles may be generated based on bandwidth portions of a wireless channel that each generation-specific preamble will occupy in the multi-generation PPDU. One or more of the generation-specific preambles may be modified based on an aggregate bandwidth of the multi-generation PPDU. This disclosure includes several options for modifying one or more generation-specific preambles or data fields to accommodate their use in a multi-generation PPDU.
Abstract:
This disclosure provides methods, devices and systems for generating packet preambles. Some implementations more specifically relate to preamble designs that support gains in data throughput achievable in accordance with the IEEE 802.11 be amendment, and future generations, of the IEEE 802.11 standard. Among other examples, the preamble designs of the present implementations may allow for more reliable packet detection, more accurate channel estimation, and more robust decoding of signal field (SIG) symbols. Additionally, or alternatively, the preamble designs of the present disclosure may be implemented with different lengths, modulation schemes, or transmit power compared to preamble designs that conform to existing versions of the IEEE 802.11 standard.
Abstract:
This disclosure provides methods, devices and systems for interpreting reserved bits and values associated with different releases of a wireless communication protocol. In some implementations, a wireless communication device may determine whether to terminate or continue reception of a physical layer protocol convergence protocol (PLCP) protocol data unit (PPDU) if it detects a reserved bit in the physical layer preamble set to an unsupported value (such as a value different than what is defined by a version or release of the wireless communication protocol supported by the wireless communication device). In some other implementations, a wireless communication device may determine whether to terminate or continue reception of a PPDU if it detects a field in the physical layer preamble set to a reserved value (such as defined by a version or release of the wireless communication protocol supported by the wireless communication device).
Abstract:
This disclosure provides systems, methods, apparatus, and computer programs encoded on computer storage media, for relative timing drift correction for distributed multi-user transmissions. In one aspect, a first access point (AP) may receive a first signal from a second AP. The first signal may be associated with a channel sounding procedure to be performed substantially simultaneously by the second AP and the first AP. The first AP may then receive a second signal from the second AP, and prior to a substantially simultaneous transmission by the second AP and the first AP. The second signal may include timing information relative to the first signal. The first AP may determine a start time of the substantially simultaneous transmission at the first AP based on the timing information, and may initiate the substantially simultaneous transmission according to the determined start time.
Abstract:
This disclosure provides methods, devices and systems for link adaptation in wireless communications. Some implementations more specifically relate to transmitter-based modulation and coding scheme (MCS) selection. A transmitting device transmits a test packet, over a wireless channel, to a receiving device. The receiving device generates one or more signal-to-interference-plus-noise ratio (SINR) estimates for the wireless channel based on the received sounding packet. In some aspects, each SINR estimate may be associated with a particular modulation order. In some other aspects, each SINR estimate may be generated based on a transmitter configuration or a receiver type to be used for subsequent communications between the transmitting device and the receiving device. The receiving device transmits feedback, including the SINR estimates, to the transmitting device. The transmitting device then selects an MCS to be used for subsequent communications with the receiving device based on the SINR estimates and associated modulation orders.