Abstract:
A photodetector includes a first doped region disposed in a semiconductor material and a second doped region disposed in the semiconductor material. The second doped region is electrically coupled to the first doped region, and the second doped region is of an opposite majority charge carrier type as the first doped region. The photodetector also includes a quantum dot layer disposed in a trench in the semiconductor material, and the quantum dot layer is electrically coupled to the second doped region. A transfer gate is disposed to permit charge transfer from the second doped region to a floating diffusion.
Abstract:
A storage transistor with a storage region is disposed in a semiconductor material. A gate electrode is disposed in a bottom side of an interlayer proximate to the storage region, and a dielectric layer is disposed between the storage region and the gate electrode. An optical isolation structure is disposed in the interlayer and the optical isolation structure extends from a top side of the interlayer to the gate electrode. The optical isolation structure is also adjoining a perimeter of the gate electrode and contacts the gate electrode. A capping layer is disposed proximate to the top side of the interlayer and the capping layer caps a volume encircled by the optical isolation structure.
Abstract:
A back side illuminated image sensor includes a semiconductor material having a front side and a back side. The semiconductor material is disposed between image sensor circuitry and a light filter array. The image sensor circuitry is disposed on the front side, and the light filter array is disposed proximate to the back side. The image sensor includes a first pixel with a first doped region that extends from the image sensor circuitry into the semiconductor material a first depth. The first pixel also includes a second doped region that is disposed between the back side of the semiconductor material and the first doped region. The second doped region is electrically isolated from the first doped region. A second pixel with a third doped region is also included in the image sensor. The third doped region extends from the image sensor circuitry into the semiconductor material a second depth.
Abstract:
A pixel cell includes a storage transistor disposed in a semiconductor substrate. The storage transistor includes a storage gate disposed over the semiconductor substrate, and a storage gate implant that is annealed and has a gradient profile in the semiconductor substrate under the storage transistor gate to store image charge accumulated by a photodiode disposed in the semiconductor substrate. A transfer transistor is disposed in the semiconductor substrate and is coupled between the photodiode and an input of the storage transistor to selectively transfer the image charge from the photodiode to the storage transistor. The transfer transistor includes a transfer gate disposed over the semiconductor substrate. An output transistor is coupled to an output of the storage transistor to selectively transfer the image charge from the storage transistor to a read out node. The output transistor includes an output gate disposed over the semiconductor substrate.
Abstract:
A storage transistor with a storage region is disposed in a semiconductor material. A gate electrode is disposed in a bottom side of an interlayer proximate to the storage region, and a dielectric layer is disposed between the storage region and the gate electrode. An optical isolation structure is disposed in the interlayer and the optical isolation structure extends from a top side of the interlayer to the gate electrode. The optical isolation structure is also adjoining a perimeter of the gate electrode and contacts the gate electrode. A capping layer is disposed proximate to the top side of the interlayer and the capping layer caps a volume encircled by the optical isolation structure.
Abstract:
An image sensor includes a plurality of photodiodes disposed proximate to a frontside of a first semiconductor layer to accumulate image charge in response to light directed into the frontside of the first semiconductor layer. A plurality of pinning wells is disposed in the first semiconductor layer. The pinning wells separate individual photodiodes included in the plurality of photodiodes. A plurality of dielectric layers is disposed proximate to a backside of the first semiconductor layer. The dielectric layers are tuned such that light having a wavelength substantially equal to a first wavelength included in the light directed into the frontside of the first semiconductor layer is reflected from the dielectric layers back to a respective one of the plurality of photodiodes disposed proximate to the frontside of the first semiconductor layer.
Abstract:
A pixel cell includes a storage transistor disposed in a semiconductor substrate. The storage transistor includes a storage gate disposed over the semiconductor substrate, and a storage gate implant that is annealed and has a gradient profile in the semiconductor substrate under the storage transistor gate to store image charge accumulated by a photodiode disposed in the semiconductor substrate. A transfer transistor is disposed in the semiconductor substrate and is coupled between the photodiode and an input of the storage transistor to selectively transfer the image charge from the photodiode to the storage transistor. The transfer transistor includes a transfer gate disposed over the semiconductor substrate. An output transistor is coupled to an output of the storage transistor to selectively transfer the image charge from the storage transistor to a read out node. The output transistor includes an output gate disposed over the semiconductor substrate.
Abstract:
An image sensor includes a pixel array with a plurality of pixels arranged in a semiconductor layer. A color filter array including a plurality of groupings of filters is disposed over the pixel array. Each filter is optically coupled to a corresponding one of the plurality pixels. Each one of the plurality of groupings of filters includes a first, a second, a third, and a fourth filter having a first, a second, the second, and a third color, respectively. A metal layer is disposed over the pixel array and is patterned to include a metal mesh having mesh openings with a size and pitch to block incident light having a fourth color from reaching the corresponding pixel. The metal layer is patterned to include openings without the metal mesh to allow the incident light to reach the other pixels.
Abstract:
An image sensor includes a plurality of photosensitive devices arranged in a semiconductor substrate. A planar layer is disposed over the plurality of photosensitive devices in the semiconductor substrate. A plurality of first microlenses comprised of a lens material is arranged in first lens regions on the planar layer. A plurality of lens barriers comprised of the lens material is arranged on the planar layer to provide boundaries that define second lens regions on the planar layer. A plurality of second microlenses comprised of the lens material is formed within the boundaries provided by the plurality of lens barriers that define the second lens regions on the planar layer. The plurality of lens barriers are integrated with respective second microlenses after a reflow process of the plurality of second microlenses.
Abstract:
Embodiments of an apparatus comprising a pixel array including a plurality of pixels formed in a substrate having a front surface and a back surface, each pixel including a photosensitive region formed at or near the front surface and extending into the substrate a selected depth from the front surface. A filter array is coupled to the pixel array, the filter array including a plurality of individual filters each optically coupled to a corresponding photosensitive region, and a vertical overflow drain (VOD) is positioned in the substrate between the back surface and the photosensitive region of at least one pixel in the array.