Abstract:
An optical element includes at least with a Faraday rotator of which both light-transmission surfaces are bonded through a bonding layer to light-transmission surfaces of polarization glasses which are orientationally dispersed with anisotropically-shaped particles at their surfaces. Each of the polarization glasses includes the orientationally dispersed anisotropically-shaped particles only at one surface opposite to the bonding surface. A relation t≧30 μm is satisfied, wherein t denotes a distance between one of the bonding surfaces of the Faraday rotator and that surface of the polarization glass on the one of the bonding surfaces of the Faraday rotator which is disposed with the particles. As a result, high isolation (25 dB or higher) can be maintained, even if a polarization glass which includes a thin layer with orientationally dispersed anisotropically-shaped particles is used.
Abstract:
A liquid injection head has a nozzle body having a row of nozzle holes and a nozzle guard that covers the row of nozzle holes. The nozzle guard has a top portion having formed therein a slit opposed to the row of nozzle holes, a sealing portion that seals an area between a peripheral edge of the top portion and the nozzle body, and a suction flow path having a suction port opening below the row of nozzle holes and communicating with a space on an inner side of the nozzle guard. A suction section connected to the suction flow path of the nozzle guard causes the space on the inner side of the nozzle guard to form a negative pressure chamber such that a liquid overflowing into the negative pressure chamber is sucked from the suction port of the suction flow path.
Abstract:
A quantitative fluorescence image and appropriate brightness is acquired and observed. Provided is a fluorescence observation apparatus including: an illumination section that includes a light source for irradiating an observation target region with illumination light and excitation light; a fluorescence image acquisition section that acquires a fluorescence image from fluorescence produced in the observation target region; a white-light image acquisition section that acquires a reference image from return light returning from the observation target region; an exposure-time adjustment unit that adjusts the exposure time based on the luminance value of the reference image; a diaphragm control section and a semiconductor laser control section that control the intensity of the illumination light and that of the excitation light based on the exposure time; a first normalization section that normalizes the luminance of the reference image and the fluorescence image by the exposure time; a second normalization section that normalizes the luminance of the reference image and the fluorescence image by the light intensity; and an image correction section that corrects the fluorescence image by the reference image, by using at least one of the normalized reference image or fluorescence image.
Abstract:
A fluoroscopy apparatus includes an illumination portion irradiating an observation target with illumination light; a fluorescence image acquisition device acquires fluorescence emitted from an observation target to acquire a fluorescence image; a fluorescence image-acquisition optical system forms an image of the observation target using the fluorescence; a reference-light image acquisition device acquires returning light from the observation region to acquire a reference image; a reference-light image-acquisition optical system forms an image using the returning light; and an image correction section corrects the fluorescence image by the reference image, wherein the product of an pixel density of the reference-light image acquisition device and the image-forming magnification of the reference-light image-acquisition optical system is less than the product of the pixel density of the fluorescence image acquisition device and the image-forming magnification of the fluorescence image-acquisition optical system.
Abstract:
A method for producing a ferroelectric thin film comprising: coating a composition for forming a ferroelectric thin film on a base electrode of a substrate having a substrate body and the base electrode that has crystal daces oriented in the (111) direction, calcining the coated composition, and subsequently performing firing the coated composition to crystallize the coated composition, and thereby forming a ferroelectric thin film on the base electrode, wherein the method includes formation of an orientation controlling layer by coating the composition on the base electrode, calcining the coated composition, and firing the coated composition, where an amount of the composition coated on the base electrode is controlled such that a thickness of the orientation controlling layer after crystallization is in a range of 5 nm to 30 nm, and thereby controlling the preferential crystal orientation of the orientation controlling layer to be in the (110) plane.
Abstract:
Coated film is removed at an outer peripheral edge of a substrate before heat-treating in CSD method by spraying or dropping liquid for removing CSD coated film including water and organic solvent mixed in a weight ratio of 50:50 to 0:100, in which the organic solvent is one or more selected from the group consisting of β-diketones, β-ketoesters, polyhydric alcohol, carboxylic acids, alkanolamines, α-hydroxy carboxylic acid, α-hydroxy carbonyl derivatives, and hydrazone derivatives.
Abstract:
A lesion extracting device having a control unit for changing an amount of the excitation light emitted toward a subject body, a measuring unit for measuring a change in the intensity of fluorescence generated from the subject body with respect to a change in the amount of the excitation light, and an extracting unit for calculating a ratio of the change in the intensity of fluorescence on the basis of a ratio of the change in the amount of the excitation light to the change in the intensity of fluorescence and for extracting a lesion part of the subject body on the basis of the ratio of the changes in the amount of the excitation light to the ratio of the changes in the intensity of fluorescence.
Abstract:
An input image signal is coded by an encoder to be outputted as a basic code string, and the basic code string is delayed by a code-string delay circuit for a predetermined period of time to be outputted as an additional code string. The basic code string is synthesized with the additional code string by a code-string synthesizer to be outputted as an output code string. Thus, there is provided an image data coding system which can quickly restore data even if the data is lost due to error and in which the increased code amount is less than the cycle refresh and the error correction.
Abstract:
One ends of a plurality of interface pins are attached to a substrate in a line. Optical semiconductor device and an electric circuit are mounted on this substrate. The other ends of the interface pins are fit into holes in an another substrate. Signals are exchanged between the two substrates via the interface pins. The interface pins are embedded in a dielectric material. A plurality of ground pins and/or ground through holes may be provided in the dielectric material around the interface pins. The dielectric constant of the dielectric material is less than the dielectric constants of the two substrates.
Abstract:
Excitation light λex is two-dimensionally scanned onto the living body tissue in the form of condensed light using an x-axis scanning mirror, a y-axis scanning mirror, and a condenser lens, whereby the excitation light λex is cast onto the living body tissue. This allows fluorescence observation with a relatively low output intensity of a laser light source. Furthermore, a white light image is generated by scanning the white light in the same way, thereby enabling fluorescence observation in the same observation region and at the same timing as with normal observation. This enables fluorescence observation of a sufficient area which allows the user to distinguish living body tissues in an endoscope observation image while suppressing deterioration in the laser light source.