Abstract:
A test and measurement instrument including a splitter configured to split an input signal having a particular bandwidth into a plurality of split signals, each split signal including substantially the entire bandwidth of the input signal; a plurality of harmonic mixers, each harmonic mixer configured to mix an associated split signal of the plurality of split signals with an associated harmonic signal to generate an associated mixed signal; and a plurality of digitizers, each digitizer configured to digitize a mixed signal of an associated harmonic mixer of the plurality of harmonic mixers. A first-order harmonic of at least one harmonic signal associated with the harmonic mixers is different from an effective sample rate of at least one of the digitizers.
Abstract:
A test and measurement instrument includes a coefficient storage facility coupled to a programmable filter. The coefficient storage facility is configured to store at least two pre-determined filter coefficient sets, and configured to pass a selected one of the at least two pre-determined filter coefficient sets to the filter based on a measurement derived using a compensation oscillator. The measurement may include clock delay and clock skew. In some examples the test and measurement instrument may additionally adjust clock delay and/or clock skew in addition to selecting appropriate filter coefficients.
Abstract:
A sampling circuit for sampling a signal input includes a signal generation circuit, a sampling switch and a control circuit. The signal generation circuit is arranged for generating a first control signal. The sampling switch has a control node, and is arranged for determining a sampling time of the signal input according to a signal level at the control node. The control circuit is arranged for controlling the signal level at the control node, wherein when the signal level at the control node corresponds to a first level, and before a signal level of the first control signal is changed in order to adjust the signal level at the control node to a second level, the control circuit couples the first control signal to the control node.
Abstract:
A time-interleaved analog-to-digital converter (ADC) uses M sub-analog-to-digital converters (sub-ADCs) to, according to a sequence, sample an analog input signal to produce digital outputs. When the M sub-ADCs are interleaved, the digital outputs exhibit mismatch errors between the M sub-ADCs due to mismatches between the sub-ADCs. A more second order subtle effect is that the mismatch error for a particular digital output from a particular ADC, due to internal coupling or other such interaction and effects between the M sub-ADCs, can vary depending on which sub-ADC(s) were used before and/or after the particular sub-ADC. If M sub-ADCs are time-interleaved randomly, the mismatches between the M sub-ADCs become a function of the sub-ADC selection pattern in the sequence. The present disclosure describes mechanisms for measuring and reducing these order-dependent mismatches to achieve high dynamic range performance in the time-interleaved ADC.
Abstract:
A time-interleaved (TI) analog-to-digital converter (ADC) architecture employs a low resolution coarse ADC channel that samples an input analog signal at a Nyquist rate and facilitates background calibration of timing-skew error without interrupting normal operation to sample/convert the input signal. The coarse ADC channel provides a timing reference for multiple higher resolution TI ADC channels that respectively sample the input signal at a lower sampling rate. The coarse ADC digital output is compared to respective TI ADC digital outputs to variably adjust in time corresponding sampling clocks of the TI ADC channels so as to substantially align them with the sampling clock of the coarse ADC channel, thus reducing timing-skew error. In one example, the coarse ADC output provides the most significant bits (MSBs) of the respective TI ADC digital outputs to further improve conversion speed and reduce power consumption in these channels.
Abstract:
A time-interleaved analog-to-digital converter for conversion of an analog input signal to a digital output signal having a sample rate R comprises an array of N constituent analog-to-digital converters that operate based on an analog-to-digital converter operation clock to provide the digital output signal, N sample-and-hold units connected to the input of a respective constituent analog-to-digital converter that operate based on a respective one of M of timing signals, wherein no timing signal is used to clock two or more of the sample-and-hold units, one or more digital output processing units that provide a sample of the digital output of a constituent analog-to-digital converter as a sample of the digital output signal based on the respective one of the M timing signals, and a timing circuit that generates the analog-to-digital converter operation clock signal, each timing signal having a period of M/R, wherein M is less or equal to N.
Abstract:
Provided is an apparatus for converting a continuous-time, continuously variable signal into a sampled and quantized signal, which includes an input line for accepting an input signal, multiple processing branches coupled to the input line, and an adder coupled to outputs of the plurality of processing branches. Each of the processing branches includes a sampling/quantization circuit and a digital bandpass interpolation filter having an input coupled to an output of the sampling/quantization circuit. The digital bandpass interpolation filters in different ones of the processing branches have frequency responses that are centered at different frequencies. The digital bandpass interpolation filter in at least one of the processing branches includes: (i) a quadrature downconverter, (ii) a first lowpass filter and a second lowpass filter, (iii) a first interpolator and a second interpolator, each having an input for inputting a variable interpolant value, and (iv) a quadrature upconverter.
Abstract:
Systems and methods presented herein provide for analog to digital conversion with variable bit resolution. In one embodiment, a system includes a processor and a multiplexer. The processor is operable to receive an analog signal, to detect power spectral densities in the analog signal, to segment the analog signal into at least two frequency bands, to sample each of the frequency bands, and to quantize each of the sampled frequency bands with bit resolutions according to detected power spectral densities of the frequency bands. The multiplexer is operable to multiplex the quantized frequency bands into a data stream.
Abstract:
A mismatch corrector can include a correction path comprising a plurality of parallel branches that each includes a correction filter that applies a respective one of a plurality of time domain filter coefficients that corresponds to a function of a mismatch profile of an interleaved analog-to-digital (IADC) signal on the IADC signal. The mismatch corrector can also include a delay path that delays the IADC signal by a predetermined number of samples to provide a delayed version of the IADC signal. The mismatch corrector can further include a summer to subtract an output of each correction filter from the delayed version of the IADC signal to generate a corrected IADC signal.
Abstract:
An analog to digital conversion device with DC offset mismatch compensation comprises a composite analog to digital converter (ADC) consisting of N interleaved sub-ADCs, a DC offset accumulator, an averaging unit, a subtraction unit, and a compensation unit. The ADC generates a stream of digital samples corresponding to signal values at an analog input to the ADC. The digital stream is a combination of N partial signals produced by the respective sub-ADCs. The DC offset accumulator measures and stores DC offsets of the respective partial signals. The averaging unit calculates an average value of DC offsets of the respective N partial signals. The subtraction unit is responsive to the DC offsets of the respective partial signals and the average value of the DC offsets, to produce a signal representative of the differences between the values arriving at a DC offset input and the value arriving at an average value input. The subtraction unit is responsive to the DC offsets of the respective partial signals and the average value of the DC offsets, to produce a signal representative of the differences between the values arriving at the DC offset input and the value arriving at the average value input. The compensation unit corrects the digital stream from the ADC by subtracting the differences from the stream from the ADC.