Abstract:
A control valve arrangement for use in controlling fuel pressure within a control chamber (30) includes a control valve member (32) which is movable between a first position in which the control chamber (30) communicates with a source of high pressure fuel, and a second position in which the control chamber (30) communicates with a low pressure fuel drain and communication between the control chamber (30) and the source of high pressure fuel is broken. The control valve arrangement also includes restricted flow means (55, 70, 86) for restricting the rate of flow of fuel from the control chamber (30) to the low pressure fuel drain when the control valve member (32) is moved from the first position to the second position. It is desirable for the restricted flow means to be configured and arranged such the rate of flow of fuel from the source of high pressure fuel to the low pressure drain for the period of time for which the control valve member (32) is moving between the second position and the first position is also restricted.
Abstract:
Fuel injectors equipped with direct control needle valves can add new capabilities to a fuel injection system, but can sometimes have difficulty in achieving low hydrocarbon emissions at levels comparable to ancestor fuel injectors that utilize a simple spring biased needle. The present invention seeks lower hydrocarbon emissions by reducing fuel pressure before the direct control needle valve member has reached its closed position toward the end of an injection event. Reducing fuel pressure can be accomplished in a number of ways depending upon the particular fuel injection system, including spilling fuel pressure in a cam system or possibly relieving pressure on an intensifier piston. By employing this strategy, fuel spray from the fuel injector can effectively end before the direct control needle valve member reaches its closed position, thus avoiding hydrocarbon production that could be caused by a small amount of fuel pushed into the combustion space as the needle moves over the last portion of its movement toward its closed position.
Abstract:
A magnetism property of an armature is increased by including a moving core of sintered metal of 1LSS to 3LSS, and a shaft of a ferromagnetic material. By contrast, a stator core contains 0.005 to 0.1 weight % resin powder, whose particle diameter is set to 50 μm or less, in particular, 25 μm or less, so as to decrease a core loss and increase a magnetism property. The stator core thereby becomes approximately equivalent to the armature in a direct current magnetism property, so that an electromagnetic actuator and a fuel injection valve that are excel in suction force and response are provided.
Abstract:
A fuel injection system for internal combustion engines, having a fuel injector that can be supplied from a high-pressure source includes a pressure boosting system containing a booster piston connected between the fuel injector and the high-pressure fuel source. The booster piston divides a chamber, connected to the high-pressure fuel source, from a high-pressure chamber communicating with the fuel injector and from a differential pressure chamber. The actuation of the pressure boosting system is effected via a 2/2-way valve assigned to the differential pressure chamber. For refilling of the differential pressure chamber and the high-pressure chamber of the pressure boosting system, hydraulically actuated check valves are provided, which upon pressure relief of the differential pressure chamber are acted upon hydraulically via a flow connection that branches off from the high-pressure chamber of the pressure boosting system.
Abstract:
An internal combustion engine fuel injector (1) has a rod (10) movable along an axis (3) to open/close a nozzle, and a servovalve (7) having a control chamber (23) with a discharge passage (26, 48) which is opened/closed by a shutter (17) movable axially under the control of an electro-actuator; the servovalve also has a fixed axial rod (33) having an outer lateral surface (34) through which the discharge passage (26, 48) comes out; the shutter (17) is fitted to the axial rod (33) to slide axially in substantially fluidtight manner, and, when closing the discharge passage (26, 48), is subjected to substantially zero resultant axial pressure by the fuel; and a calibrated portion (42, 52) of the discharge passage (26, 48) is formed close to the outlet of the discharge passage to produce swirl and/or cavitation in the fuel outflow near to the closing area between the shutter (17) and the axial rod (33).
Abstract:
Common rail fuel injectors typically have difficulty in changing an injection rate during an injection event. Fuel injectors for this common rail fuel injection system include a multi-position admission valve. The admission valve is stoppable at a middle position to inject fuel at a low rate. The lower rate is accomplished by leaking some fuel to drain to reduce injection pressure. The admission valve is also stoppable at a fully open position to inject fuel at a high rate. Fuel injection events are ended, and the fuel injectors maintained between injection events, with the admission valve member in contact with a supply seat to close the high pressure supply passage. This strategy can be used in conjunction with a spring-biased needle valve member to expand fuel injector capabilities.
Abstract:
The injector has a hollow body housing the body of the metering valve, which has a discharge hole for discharging the usual control chamber. The hole comes out at a flat surface of the valve body, and is engaged by a flat surface of a plate, under the control of an armature of an electromagnet. The armature is in the form of a disk, has substantially no stem, is connected to the hollow body by a leaf spring hinge, and has a surface having a spherical-bowl-shaped recess. A ball is located between the recess and another recess carried by a second surface of the plate. The valve body is fixed to the hollow body by a ring nut of a given height. And, to cover the distance between the valve body and the armature, a spacer member is preferably formed in one piece with the valve body.
Abstract:
This invention pertains generally to valve lift spacers that determine the travel distance of a valve member, such as movement between upper and lower seats. In the case of pressure switching valves, such as those used in the fuel injection industry, valve travel distance is often relatively small. Because of realistic machining tolerances, it is often difficult to mass produce valves that consistently exhibit comparable travel distances, especially when those distances are on the order of microns. The present invention addresses this issue by providing valve lift spacers with a variety of thicknesses in order to compensate for the inevitable variation that would otherwise be produced due to the various valve components having realistic geometrical tolerances. The valve lift spacer and a valve using the same finds a principal use in fast response pressure switching valves, such as those utilized in electro-hydraulic actuator portion of a fuel injector.
Abstract:
A unitary fuel injector and nozzle assembly comprising a high-pressure piston pump and a cylinder body that define a high-pressure fuel pump chamber. An injector nozzle assembly is in fluid communication with the pump chamber and is held in place by a nozzle nut detachably secured to the cylinder body. A nozzle valve assembly includes a spring located in a spring cage within the nozzle nut. A control module is assembled between the cylinder body and the spring cage, the module including a module body having a valve chamber that receives a control valve and a stator assembly as separate and removable elements of the module whereby the stator assembly, the nozzle valve assembly and the control valve can be changed independently of the other elements of the injector to meet various operating requirements.
Abstract:
The invention relates to a 3/2-port directional-control valve for controlling the injection of fuel in a common rail injection system of an internal combustion engine, with a first switched position in which an injection nozzle is connected to a fuel return and with a second switched position in which the injection nozzle is connected to a high-pressure fuel reservoir. The beginning of the injection takes place in a pressure-controlled manner, whereas the end of the injection takes place in a stroke-controlled manner.