Abstract:
By managing a coating material injection time and the like parameters so that they may be controlled within specifically determined ranges, an in-mold coating formation method is provided for manufacturing a molded product coated with a coating layer having a uniform quality in its outside appearance. By continuously and unifyingly managing a mold opening amount and a mold closing force, an in-mold coating formation method and an in-mold coating formation apparatus are provided which are so formed that, if the control of a mold closing force and the control of a mold opening amount are continuously changed and at the same time a high precision and a high response are maintained, it is possible to enlarge a selectable range for selecting a molding condition, thereby producing an integrally formed molded product having an excellent outside appearance and whose coating layer has a high adhesion strength. Further, there are provided a mold having a specifically formed auxiliary cavity and an in-mold coating formation method which employs said mold, so that it is possible to prevent a coating material from leaking out of the mold, thereby shortening the molding formation cycle, and making it possible to manufacture a molded product having a stabilized quality. Moreover, by controlling an internal pressure in the mold cavity under a predetermined condition after the injection of the coating material, there is provided a further in-mold coating formation method which makes it possible to obtain an integrally formed molded product whose coating layer has a sufficient strength with the molded product, without having to use a special coating material and a special resin to be used for molding. In addition, by using a mold having a specifically shaped sub-cavity, there is provided a still further in-mold coating formation method which can keep mold temperature at a relatively low value, cause the coating material to cure at a predetermined temperature and within a predetermined time period, thereby shortening the molding formation cycle, improving the productivity, improving the physical properties of a coating layer, thus obtaining a good molded product.
Abstract:
In an injection molding machine having upstream and downstream channels communicating with each other for delivering fluid material to one or more mold cavities, apparatus for controlling delivery of the melt material from the channels to the one or more mold cavities, each channel having an axis, the downstream channel having an axis intersecting a gate of a cavity of a mold, the upstream channel having an axis not intersecting the gate and being associated with an upstream actuator interconnected to an upstream melt flow controller disposed at a selected location within the upstream channel, the apparatus comprising a sensor for sensing a selected condition of the melt material at a position downstream of the upstream melt flow controller; an actuator controller interconnected to the upstream actuator, the actuator controller comprising a computer interconnected to a sensor for receiving a signal representative of the selected condition sensed by the sensor, the computer including an algorithm utilizing a value indicative of the signal received from the sensor as a variable for controlling operation of the upstream actuator; wherein the upstream melt flow controller is adapted to control the rate of flow of the fluid material at the selected location within the upstream channel according to the algorithm.
Abstract:
A controller and a method for an ejector mechanism in an injection molding machine for appropriately setting a terminal position of a forward motion of ejector pins of the ejector mechanism. The terminal position of the forward motion is set to a position where an elastic force of return springs does not exceed a retaining force of a brake device for retaining the ejector pins at the terminal position. The elastic force of the springs are detected during the ejector pins are moved forward. A position of the ejector pins immediately before the detected elastic force of the springs exceeds the retaining force of the brake device is determined and displayed on a display device as a criterial position. The terminal position of the forward motion of the ejector pins is set not to exceed the determined criterial position.
Abstract:
A real time method and apparatus for updating preventative maintenance data in a molding system. The molding system could be a metal molding system or a plastics molding system. Real time threshold status data receives periodic updates based upon historical data, frequency data, trends data, manufacturer data, customer data, and geographic location data.
Abstract:
A method and apparatus for real time preventative maintenance of a molding system. The molding system could be a metal molding system or a plastics molding system. The method and apparatus are capable for scheduling service, business billing and invoicing, parts management, a remote control of a molding system for assessing the need for preventative maintenance. The indication for preventative maintenance is based upon a real time operational status of the molding system.
Abstract:
A real time method and apparatus for indicating preventative maintenance in a molding system. The molding system could be a metal molding system or a plastics molding system. Real time threshold status data is compared to real time operational parameter data as measured by sensors located on the molding system. If an out of tolerance condition is detected and validated by a comparator, then an indicator is provided to notify the need for preventative maintenance.
Abstract:
In an injection molding machine having upstream and downstream channels communicating with each other for delivering fluid material to one or more mold cavities, apparatus for controlling delivery of the melt material from the channels to the one or more mold cavities, each channel having an axis, the downstream channel having an axis intersecting a gate of a cavity of a mold, the upstream channel having an axis not intersecting the gate and being associated with an upstream actuator interconnected to an upstream melt flow controller disposed at a selected location within the upstream channel, the apparatus comprising a sensor for sensing a selected condition of the melt material at a position downstream of the upstream melt flow controller; an actuator controller interconnected to the upstream actuator, the actuator controller comprising a computer interconnected to a sensor for receiving a signal representative of the selected condition sensed by the sensor, the computer including an algorithm utilizing a value indicative of the signal received from the sensor as a variable for controlling operation of the upstream actuator; wherein the upstream melt flow controller is adapted to control the rate of flow of the fluid material at the selected location within the upstream channel according to the algorithm.
Abstract:
In a method for operating an injection molding machine, particularly a method for securing tools of an injection molding machine, a desired variable curve is determined along at least one section of a travel path of a molding tool in a desired variable determination phase, and the injection molding machine is operated according to the determined desired variable curve in a subsequent operational phase. A default curve of at least one initial variable is predefined, the molding tool is driven in accordance with the default curve of the initial variable in a test run, at least one resulting value of the desired variable is measured and stored during the test run, and a desired variable curve is formed along the section of the travel path from the measured values of the desired variable.
Abstract:
A movable die is held on the front face of a movable platen. Ejector pins are incorporated in the movable die. An ejector unit that is provided with an ejector plate, actuator rods, etc., is mounted on the back of the movable platen. In ejecting a molded product from a die face, the ejector plate is advanced to cause the actuator rods to push out the ejector pins. In the ejecting load monitoring method of the invention, a plurality of monitoring sections are provided in a movement area of the ejector plate (or the actuator rod), and an upper limit value of a forward thrust load of the ejector plate is previously set for each monitoring section. An alarm is issued when the forward thrust load of the ejector plate reaches the upper limit value set for any of the monitoring sections during the ejecting operation.
Abstract:
A temperature regulator main body is connected to a cooling hole formed in a temperature regulating part under a hopper through a tube and comprises a tank for a cooling medium, a pump, a radiator, and a fan facing the radiator to send cold air and driven by a motor. By driving of the pump, the cooling medium circulates between the temperature regulating part under the hopper and the temperature regulator main body. A temperature sensor is provided to the temperature regulating part under the hopper. A controller for controlling an injection molding machine cools the circulating cooling medium by the fan and feedback controls the temperature of the temperature regulating part under the hopper when a temperature detected by the temperature sensor is higher than a preset temperature.