Abstract:
A method of forming a poppet valve having a stem, a valve head and a valve seat while concurrently maintaining compressive residual stress without grain coarsening on both the valve body and the valve seat. The method includes forming a rounded cladded part on the valve head of the poppet valve by welding and forming a valve seat surface at a predetermined aperture angle and cutting the cladded part to form a smooth surface which is subjected to uniform contact pressure at a temperature less than the recrystallization temperature of the base material or cladding material, whichever is lower, to enhance the durability of the valve seat.
Abstract:
Forming of a valve head portion (1) of a hollow engine valve (V) comprising a material particularly satisfactory in heat resistance is performed by cold forging. On this occasion, the material with excellent heat resistance is worked to form a valve head portion semifinished product (11) having a hollow hole (S11) whose inner diameter (φ11) is equal to the maximum inner diameter (φ11) of a hollow hole (S1) of a finished product of the valve head portion (1), and having a diameter-increased section (111) whose maximum outer diameter (φ12) is equal to the maximum outer diameter (φ12) of a diameter-increased section (1a) of the finished product. Parts of the valve head portion semifinished product other than a central part to a lower part of the diameter-increased section (111) are necked down by cold forging performed a plurality of times to obtain the finished product of the valve head portion (1). This method of obtaining the finished product is provided by the present invention.
Abstract:
A method for manufacturing a hollow engine valve includes inserting a half-finished hollow shaft section in sequence into die holes which have different hole shapes, and sequentially drawing so as to reduce the outer diameter and the inner diameter of the hollow shaft section and stretch its length in stages. The half-finished product is subjected to heat treatment so that the hardness thereof is lower than or equal to a predetermined level. A shaft end sealing section is formed by increasing the wall thickness of the opening end of the hollow shaft section toward the inside of the opening and the gap in the shaft end sealing section is welded.
Abstract:
A method of manufacturing an intake vallve for an internal combustion engine is disclosed. The method comprises providing a valve base comprising an elongated stem and an enlarged portion. A floating peripheral ring is provided and is positioned on the valve base. The floating peripheral ring is locked into place with an annular locking component. The locking component defines a range of motion of the floating peripheral ring with respect to the valve base.
Abstract:
In order to propose a hollow poppet valve having an excellent, high strength to weight properties by constructing it in order that no influence from welding heat is exerted onto the face, and no stress is concentrated at the welded portion, and a method for manufacturing the same valve, a fillet area 14 opened like a flare is integrally formed at one end of the cylindrical stem portion 12, and a cap is integrally welded to the open edge portion of the fillet area, wherein only the open edge portion of the fillet area 14 is made thicker than the other portions, and the face 15 is formed on the thicker portion 30. Thereby, it is possible to prevent the hardness of the face 15 from being lowered due to the cap welding heat, and stress from being concentrated at the welded portion, whereby the property of high strength to weight can be improved.
Abstract:
An ultra light popper valve for an internal combustion engine. The valve is formed by cold forming a blank into an elongated cup having an extremely thin wall and a flared open end onto which a cap is welded, the bosom end of the cup which defines the tip end of the valve having a wall section which is substantially of the thickness of the original blank. In accordance with one aspect of the invention, a keeper groove is formed adjacent the tip end as part of the cold forming process.
Abstract:
A method of making work-hardened poppet exhaust valves for internal combustion engines comprises the steps of: providing a solutioned work-hardenable austenitic stainless steel coil or bar stock in which chromium is present in the range of 13%-25% by weight, nickel is present in the range of 4%-16% by weight, manganese is present in the range of 0.25%-8% by weight, copper is present in the range of 0.5%-7% by weight, the interstitial elements carbon plus nitrogen are present in a total amount less than 0.45% by weight, and at least one refractory metal selected from the group consisting of molybdenum, niobium, vanadium, tungsten and tantalum is present in the range of 1%-5% by weight; extruding the coil stock to a poppet valve preform configuration at a speed in the range of 60 to 100 strokes per minute and at a temperature in the range of room temperature to 1,000.degree. F.; and heading the preform at the same speed while maintaining the head of the preform at a temperature in the range of room temperature to 2,200.degree.; the parameters of extrusion providing the work-hardened poppet valve with a stem hardness more than R.sub.c =25.
Abstract:
A method of manufacturing a hollow engine valve includes the steps of inserting a core of free-cuting metal into a pipe material of heat-resistant steel to provide a shaping stock, shaping the shaping stock into a rough valve profile of a mushroom shape, subsequently forming a hole in a central portion of said rough valve profile by cutting, and sealingly plugging an open end of the hole close to the valve mushroom portion.
Abstract:
First a metallic pipe is tapered, so that it is substantially closed at its end, and so that its cross-section is reduced. Then it is pressed hard against a mold electrode, and a large electric current is passed through it to the mold electrode, so that the end softens, but does not melt, and by the pressing (which may be of the order of 2.5 tons weight) the end is formed into a lump, with no trace remaining of the hole through the pipe within the lump. In certain embodiments, the mold electrode may be formed with a notch, and/or a depression, and may be inclined at an oblique angle to the axis of the pipe, and may be moved sideways or at an oblique angle to the axis of the pipe as the current is passed and the lump formed.
Abstract:
This invention relates to a method of hot forming from a blank pipe hollow mushroom type metallic parts having a hollow stem and a cap portion whose outer diameter is far larger than that of the blank pipe. By using a thin-walled pipe whose size corresponds to that of the hollow stem processing of the hollow stem can be omitted or minimized. More particularly, it relates to a method of hot forming hollow valves for engines or parts having a cap portion and hollow stem, the outer diameter of said cap portion being more than two or three times as large as that of the stem portion, by using a thin-walled pipe having a ratio between its outer diameter and its wall thickness of more than 3.5.