Abstract:
The invention includes methods by which the size and shape of photoresist-containing masking compositions can be selectively controlled after development of the photoresist. For instance, photoresist features can be formed over a substrate utilizing a photolithographic process. Subsequently, at least some of the photoresist features can be exposed to actinic radiation to cause release of a substance from the photoresist. A layer of material is formed over the photoresist features and over gaps between the features. The material has a solubility in a solvent which is reduced when the material interacts with the substance released from the photoresist. The solvent is utilized to remove portions of the material which are not sufficiently proximate to the photoresist to receive the substance, selectively relative to portions which are sufficiently proximate to the photoresist. The photoresist features can be exposed to the actinic radiation either before or after forming the layer of material.
Abstract:
Electronic devices may be provided with imaging modules that include plasmonic light collectors. Plasmonic light collectors may be configured to exploit an interaction between incoming light and plasmons in the plasmonic light collector to alter the path of the incoming light. Plasmonic light collectors may include one or more spectrally tuned plasmonic image pixels configured to preferentially trap light of a given frequency. Spectrally tuned plasmonic image pixels may include plasmonic structures formed form a patterned metal layer over doped silicon layers. Doped silicon layers may be interposed between plasmonic structures and a reflective layer. Plasmonic image pixels may be used to absorb and detect as much as, or more than, ninety percent of incident light at wavelengths ranging from the infrared to the ultraviolet. Plasmonic image pixels that capture light of different colors may be arranged in patterned arrays to form imager modules or imaging spectrometers for optofluidic microscopes.
Abstract:
A compact image sensor for imaging radiation emitted by fluorescing objects exposed to excitation light is disclosed. The compact image sensor includes a light guide defining a longitudinal axis for channeling radiation emitted by the fluorescing object; a reflective surface defined on the light guide that is oriented at an angle with respect to the longitudinal axis of the light guide to reflect the excitation light away from a detector of the image sensor; and the detector positioned at an end of the light guide for imaging radiation emitted by the fluorescing object. Also disclosed is a fluorescence imaging system for imaging radiation emitted by a fluorescing object to be imaged by compact image sensor and a method of fluorescence imaging.
Abstract:
An imaging system may include an image sensor configured to image materials at near field imaging ranges from the image sensor. Near field imaging ranges may be on the scale of 1-10 pixel sizes from the image sensor. The materials being imaged may be fluorescent materials that emit radiation at fluorescent wavelengths when the materials are exposed to radiation at excitation wavelengths. The image sensor may include color filter materials that block radiation at excitation wavelengths while transmitting radiation at fluorescent wavelengths. The image sensor may include light guides that reduce cross-talk between pixels and improve localization of emitted radiation, thereby allowing the image sensor to determine which pixel(s) is (are) located beneath the materials being imaged. The light guides may include may include sloped sidewalls and may include reflective sidewalls, which may improve radiation collection (e.g., efficiency) and localization of emitted radiation.
Abstract:
An imaging system may include an image sensor and lenses on a substrate. The lenses may focus light onto the image sensor. The imaging system may include multiple optical channels, each of which directs light at a particular wavelength or range of wavelengths to a particular region of the image sensor. The imaging system may include optical crosstalk suppression structures that reduce or minimize optical crosstalk between the optical channels. The optical crosstalk suppression structures may include, for each optical channel, at least a pair of matching color filters. The color filters may keep any light that leaks between optical channels from reaching the image sensor.
Abstract:
Micro-carrier systems may be used to carry and identify sample materials through an analysis system. Analysis systems may include an image sensor integrated circuit containing image sensor pixels. A channel containing a fluid with particles such as cells may be formed on top of the image sensor. Micro-carriers may be used to carry the cells in the fluid. Micro-carriers may have identifier regions and active regions. Identifier regions may include coded information identifying cells, fluid samples, or other materials carried in the active region. Active regions may carry reagents, trapping agents, cells or other sample materials. Active regions may be formed on a surface of a micro-carrier or may be formed in a cavity inside the micro-carrier. Micro-carriers may include magnetic control structures that can be used to guide, rotate, accelerate or position micro-carriers.
Abstract:
An image sensor integrated circuit may contain image sensor pixels. A channel containing a fluid with particles such as cells may be formed on top of the image sensor. The image sensor pixels may form light sensors and imagers. The imagers may gather images of the cells or other particles as the fluid passes over the imagers. The channel may have multiple branches. Gating structures and other fluid control structures may control the flow of fluid through the channel branches. Portions of the channel may be used to form chambers. The chambers may each be provided with one or more light sensors, light sources, and color filters to alter the color of illumination form a light source, one or more reactants such as dyes, antigens, and antibodies, and heaters. The branches may route the fluid to respective chambers each of which has a different set of capabilities.
Abstract:
A microlens structure includes lower lens layers on a substrate. A sputtered layer of glass, such as silicon oxide, is applied over the lower lens layers at an angle away from normal to form upper lens layers that increase the effective focal length of the microlens structure. The upper lens layers can be deposited in an aspherical shape with radii of curvature longer than the lower lens layers. As a result, small microlenses can be provided with longer focal length. The microlenses are arranged in arrays for use in imaging devices.
Abstract:
Various embodiments include interconnects for semiconductor structures that can include a first conductive structure, a second conductive structure and a non-hardening liquid conductive material in contact with the first and second structure. Other embodiments include semiconductor components and imager devices using the interconnects. Further embodiments include methods of forming a semiconductor structure and focusing methods for an imager device.
Abstract:
A method, apparatus and system providing a microlens having a substantially flat upper surface and having a plurality of holes arranged in a pattern in a microlens material which produces a focal point at a desired location.