Abstract:
The present invention provides a power amplifier module featuring that: its output power characteristic smoothly changes as the input control Voltage changes; and its control sensitivity is stable over a wide dynamic range. By same means, idling current for gain setting is supplied to a single amplifier element or all of multiple stages of amplifier elements of the power amplifier module. By making this idling current behave so as to exponentially change, relative to input control voltage, the invention enables output power control proportional to the input control voltage.
Abstract:
A semiconductor device with high structural reliability and low parasitic capacitance is provided. In one example, the semiconductor device has a surface. The semiconductor device comprises a semiconductor region, wherein an emitter region, a base region, and a collector region are laminated from a side near a substrate of the semiconductor region; an insulating protection layer disposed on the surface; and a wiring layer disposed on the surface, the insulating protection layer forming a via hole from the side of the substrate of the semiconductor region, the via hole being formed to allow the wiring layer to make a contact to an electrode of the emitter region from a side of the substrate where the emitter region, the base region, and the collector region are laminated and where the semiconductor region is isolated.
Abstract:
A power amplifier module is provided with a function of protecting an amplifying device against destruction caused by a standing wave by reflection from an antenna end in load variation. Increase in base current from idling current of a final stage amplifying portion GaAs-HBT in load variation is detected and canceled and collector current is restrained to thereby prevent an increase in output and prevent destruction of GaAs-RET. By also using a function of successively lowering idling current when power source voltage is elevated and a clipping function of diodes connected in parallel with output stage GaAs-RET, voltage as well as current more than necessary are avoided from being applied on the output stage GaAs-RET.
Abstract:
Disclosed is a semiconductor device using a polycrystalline compound semiconductor with a low resistance as a low resistance layer, and its fabrication method. The above polycrystalline compound semiconductor layer is doped with C or Be as impurities in a large amount, and is extremely low in resistance. The polycrystalline compound semiconductor layer is formed by either of a molecular beam epitaxy method, an organometallic vapor phase epitaxy method and an organometallic molecular beam epitaxy method under the condition that a substrate temperature is 450.degree. C. or less and the ratio of partial pressure of a V-group element to a III-group element is 50 or more. In the case that the above polycrystaline compound semiconductor layer with a low resistance is used as an extrinsic base region of an heterojunction bipolar transistor, since the extrinsic base region can be formed on a dielectric film formed on a collector, it is possible to reduce the base-collector capacitance, and hence to enhance the operational speed of the heterojunction bipolar transistor.
Abstract:
This invention discloses a heterojunction type field effect transistor such as 2DEG-FET and a heterojunction type bipolar transistor such as 2DEG-HBT. The former is fabricated by applying to the formation of its source and drain regions a technique which causes the disorder of the heterojunction by intoduction of an impurity such as by ion implantation or a technique which causes the disorder of the heterojunction by forming a film made of at least one kind of material selected from insulators, metals and semiconductors which have a different linear coefficient of thermal expansion from that of the material of a semiconductor substrate on the heterojunction semiconductor region which is to be disordered. The latter is fabricated by applying either of the techniques described above to a base ohmic contact region. These semiconductor devices can reduce the source-gate resistance and the parasitic base resistance. The invention discloses also the structure of the ohmic contact layer which has a trench on the surface thereof and is particularly effective for reducing the source-gate parasitic resistance.
Abstract:
Disclosed is a semiconductor device including a heterojunction bipolar transistor in which the front surface of a base layer and the surface of an emitter-base junction are covered with a high-resistivity layer of compound semiconductor containing at least one constituent element common to an emitter layer and the base layer.
Abstract:
A resonant tunneling device includes a superlattice layer which includes an interlaminated structure of three semiconductor layers each having a narrow energy bandgap and serving as a quantum well layer and four semiconductor layers each having a wide energy bandgap and serving as a barrier layer and in which three quantum levels are formed in the quantum well layers. A resonant tunneling phenomenon produced between the quantum levels provides peak current values which are substantially equal to each other, peak voltages which can be set independently from each other, and peak-to-valley (P/V) ratios which are high, thereby realizing a resonant tunneling device which has an excellent performance as a three state logic element for a logic circuit. By increasing the number of quantum well layers and the number of barrier layers, a logic element of four or more states can be realized for a logic circuit.
Abstract:
2A heterojunction bipolar transistor is disclosed in which a region of a base layer which extends in the vicinity of the interface between the base layer and an emitter layer is doped with an impurity at a higher concentration than that in the inside of the base layer to thereby form a built-in field by which carriers injected from the emitter are caused to drift to the inside of the base layer. In the transistor having this structure, the current gain does not depend on the emitter area, and it is possible to obtain a large current gain with a small emitter area.