Abstract:
Methods and apparatuses are provided for data transmission of a User Equipment (UE) in a communication system supporting HARQ. A Physical Downlink Control Channel (PDCCH) corresponding to a second cell is received in a first cell. An Uplink/Downlink (UL/DL) configuration of the first cell is identified as an Uplink (UL) reference UL/DL configuration, if the UE is configured with at least two cells including the first cell and the second cell, a PDCCH corresponding to the second cell is monitored on the first cell, and a pair of the UL/DL configuration of the first cell and a UL/DL configuration of the second cell is a predetermined set. A Physical Uplink Shared Channel (PUSCH) transmission is adjusted based on the identified UL reference UL/DL configuration.
Abstract:
A control channel transmission method and an apparatus for facilitating control channel transmission in an intra-cell carrier aggregation system by applying Frequency Division Duplexing (FDD) cell's uplink control channel transmission timing for transmitting the uplink control channel corresponding to the TDD cells' downlink data are provided. The control channel transmission method and apparatus of the present disclosure are capable of transmitting/receiving data of the cells operating in the different duplexing modes simultaneously, resulting in improvement of peak data rate.
Abstract:
A method and an apparatus for transmitting uplink/downlink data on Time Division Duplexing (TDD) carriers are provided. The method includes transmitting to a base station in a Primary Cell (PCell) and a Secondary Cell (SCell), a TDD Uplink-Downlink (UL-DL) configuration of the PCell having a DL subframe super-set or UL subset that are common in the SCell and the PCell and a TDD UL-DL configuration differing from each other, receiving data at a first subframe in the SCell, and transmitting, when a UL subframe set of the SCell is a subset of a UL subframe of the PCell, a feedback corresponding to the data at a subframe predefined in association with the first subframe in the PCell according to the TDD UL-DL configuration of the SCell. The method supports both the self-scheduling and cross-carrier scheduling of the UE using carriers of different TDD configurations.
Abstract:
The disclosure relates to a method and apparatus for transmitting and receiving a signal in a wireless communication system. An operating method of a terminal in a wireless communication system includes receiving, from a base station, information related to a position of a symbol in which a synchronization signal block is transmitted in a time domain, determining whether a position of a symbol configured to transmit an uplink signal overlaps the position of the symbol in which the synchronization signal block is transmitted in the time domain, in case that the position of the symbol configured to transmit the uplink signal overlaps the position of the symbol in which the synchronization signal block is transmitted in the time domain, determining whether a time or frequency-division duplexing (XDD)-related indicator is configured or received, and transmitting the uplink signal to the base station, based on a result of the determining whether the XDD-related indicator is configured or received.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method by a terminal in a wireless communication system is provided. The method includes identifying a slot type of a terminal from a first slot type and a second slot type, determining a position of a demodulation reference signal (DMRS) based on the slot type, and receiving the DMRS based on the position from a base station.
Abstract:
Disclosed are a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system; and system therefor. The present disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security, and safety-related services, and the like) on the basis of 5G communication technology and IoT-related technology. A power control method for uplink transmission in a wireless cellular communication system is disclosed.
Abstract:
Disclosed are a communication method for merging, with an IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system, and a system therefor. The present disclosure can be applied to an intelligent service (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail business, security and safety-related services, and the like) on the basis of a 5G communication technology and an IoT-related technology. The present embodiment provides a method and an apparatus for a delay reduction mode operation of a base station and a terminal, and the base station of the present invention can: transmit, to the terminal, first information related to hybrid ARQ (HARQ) timing by means of higher layer signaling; transmit, to the terminal, scheduling information and second information related to the HARQ timing; transmit, to the terminal, data scheduled by the scheduling information; and receive, from the terminal, positive reception acknowledgement or negative reception acknowledgement (ACK/NACK) information with respect to the data according to the HARQ timing, which is determined on the basis of the first information and the second information.
Abstract:
A method is provided for a terminal, which includes identifying information on a number of slots for PUCCH transmission via an RRC signal; obtaining information on a starting symbol for the PUCCH transmission and information on a PRB for the PUCCH transmission; identifying a slot index for the PUCCH transmission for the PUCCH transmission; and performing, based on the information on the starting symbol, the information on the PRB, and the slot index, the PUCCH transmission in a plurality of slots corresponding to the number of slots. The information on the starting symbol and the information on the PRB are applied to a PUCCH of each of the plurality of slots. The PUCCH of each of the plurality of slots includes at least four symbols. The information on the starting symbol and the information on the PRB are obtained based on a combination of the RRC signal and physical signal.
Abstract:
Provided is an integrated access and backhaul (IAB) node for controlling transmit and receive power of a signal in a wireless communication system, the IAB node including: a transceiver; and at least one processor, wherein the at least one processor is configured to: determine a power value or an offset used for down adjustment of maximum transmit power for a backhaul link signal to be received by the IAB node, based on receive power of an access uplink signal from a terminal or maximum transmit power of the terminal; control the transceiver to transmit power adjustment information including the power value or the offset to a parent node of the IAB node or a child node of the IAB node; and control the transceiver to receive, from the parent node or the child node, a backhaul link signal in which the maximum transmit power is down-adjusted based on the power adjustment information.
Abstract:
Disclosed are a communication method for merging, with an IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system, and a system therefor. The present disclosure can be applied to an intelligent service (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail business, security and safety-related services, and the like) on the basis of a 5G communication technology and an IoT-related technology. Disclosed are a method and an apparatus for supporting a reservation resource, and according to the present invention, a method for a base station in a communication system comprises a step of transmitting reservation resource-related information to a terminal, determining, on the basis of the reservation-related information, whether a first signal is mapped to the reservation resource and a resource, in which the first signal to be transmitted to the terminal is overlapped, and transmitting the first signal to the terminal on the basis of the determination.