Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a base station (BS) may transmit and a user equipment (UE) may receive cloned bandwidth part configuration information. In some aspects, the UE may determine a linkage between a primary bandwidth part and the cloned bandwidth part. In some aspects, the BS may transmit and the UE may receive a downlink control information message identifying the primary bandwidth part to signal a bandwidth part switch for the primary bandwidth part and a first bandwidth part or identifying the cloned bandwidth part to signal the bandwidth part switch for the primary bandwidth part and a second bandwidth part. In some aspects, the UE may perform the bandwidth part switch based at least in part on the downlink control information message. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communications are described. Some methods include receiving an indication of a traffic flow to be served by a wireless communication system, determining scheduling information for the traffic flow based on the indication, wherein the scheduling information comprises one or more of a time offset, a reliability, and a minimum throughput of delivery of data traffic for the flow, and transmitting the scheduling information in response to the indication. Some methods include determining delta time offset information relative to one or more existing time offsets of packet arrivals of one or more traffic flows for scheduling transmissions of a first traffic flow in the wireless communication system, and transmitting the delta time offset information to a node of the first traffic flow for scheduling transmissions of the first traffic flow in the wireless communication system. Other aspects and features are also claimed and described.
Abstract:
A method, apparatus are described for a cloud based radio access network (RAN). The method may include transmitting a first message from a base station to a user equipment (UE), determining that a second message from the UE is not received by a media access control (MAC) scheduler within a pre-determined time, delaying re-transmission of the first message or transmission of a third message from the base station to the UE, and scheduling other hybrid automatic repeat request (HARQ) processes of the UE in intervening sub-frames. The method may include receiving a first message from a UE at a base station, determining that a second message from the base station cannot be constructed within a pre-determined time from delays in receiving assignments from a Cloud, constructing and transmitting the second message to UEs based on assignments received earlier from the Cloud, and suspending an HARQ process associated with other UEs.
Abstract:
A method, apparatus are described for a cloud based radio access network (RAN). The method may include transmitting a first message from a base station to a user equipment (UE), determining that a second message from the UE is not received by a media access control (MAC) scheduler within a pre-determined time, delaying re-transmission of the first message or transmission of a third message from the base station to the UE, and scheduling other hybrid automatic repeat request (HARQ) processes of the UE in intervening sub-frames. The method may include receiving a first message from a UE at a base station, determining that a second message from the base station cannot be constructed within a pre-determined time from delays in receiving assignments from a Cloud, constructing and transmitting the second message to UEs based on assignments received earlier from the Cloud, and suspending an HARQ process associated with other UEs.
Abstract:
A pulse-per-n-seconds signal may be generated at a wireless communication station to synchronize the internal hardware of the wireless communication station.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a network node, an indication of one or more data radio bearers between the UE and the network node that are configured for application data unit (ADU) traffic. The UE may communicate, with an application server, one or more ADU traffic flows through the network node using the one or more data radio bearers. Numerous other aspects are provided.
Abstract:
An example device for exchanging media data via a network includes a memory configured to store media data; and one or more processors implemented in circuitry and configured to: retrieve data representative of an expected time between a first frame of media data and a second frame of the media data from a media application; receive the first frame of the media data at a first time; wait to process the second frame of the media data until a second time that is equal to or greater than the first time plus the expected time; and process the second frame of the media data at the second time.
Abstract:
Methods, systems, and devices for wireless communications are described. A wireless communications entity, such as a user equipment (UE), a base station, a network core, or an application server, may identify a round-trip time (RTT) latency requirement that may pertain to a round-trip latency in wireless communications between the UE and the base station. The wireless communications entity may identify a one one-way directional delay budget that satisfies the RTT latency requirement for an application of an application server. The application server may be in communication with the UE via the base station. The wireless communications entity may modify a value of the one-way directional delay budget and transmit a message that is associated with the modified value of the one one-way directional delay budget.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive a message indicating multiple contention-based resource sets dedicated for the transmission of scheduling requests, where each contention-based resource set is associated with one or more respective contentions. The one or more respective conditions may be associated with a packet delay threshold, a buffer size threshold, or a probability function. The UE may transmit a scheduling request to request uplink resources for the UE using a resource of a contention-based resource set based on satisfaction of the one or more respective conditions of the contention-based resource set. In some examples, a remaining packet delay budget of an uplink message at the UE may satisfy the packet delay threshold of the contention-resource set. As such, the UE may randomly select the resource, from the contention-based resource set, to use for transmission of the scheduling request.
Abstract:
In some aspects of a wireless communication system, a user equipment (UE) may determine and transmit a configuration of a periodicity and a burst size for periodically transmitting uplink data communications to a base station. The UE may periodically receive, from the base station, uplink data grants based at least in part on the periodicity and the burst size of the configuration, and periodically transmit uplink data communications based at least in part on the periodicity and the burst size of the configuration. Numerous other aspects are provided.