Abstract:
The present disclosure describes systems and techniques relating to wireless communications. According to an aspect of the described systems and techniques, an apparatus includes circuitry configured to receive a signal representing a wireless communication transmission; and circuitry configured to process the signal to (i) decode a control portion of the wireless communication transmission, (ii) determine from the decoded control portion that a data portion of the wireless communication transmission was successfully decoded previously and acknowledged, and so the wireless communication transmission is an unnecessary retransmission, and (iii) trigger acknowledgement of the wireless communication transmission being successfully decoded, without completing a decode of the data portion of the wireless communication transmission, when the unnecessary retransmission is detected.
Abstract:
A presence of interference between a first wireless network and a second wireless network is determined. Transmissions in the first wireless network are coordinated with transmissions in the second wireless network to reduce interference between the first wireless network and the second wireless network. Transmissions in the first wireless network are scheduled based on the coordinating to reduce interference between the first wireless network and the second wireless network.
Abstract:
Systems and methods for mitigating known interference at a receiving device are provided. A signal from a transmission source is received by a receiving device that is affected by an interference source. At least one of a first pilot signal associated with the transmission source and a second pilot signal associated with the interfering source is determined. The first pilot signal includes information broadcast from the transmission source and the second pilot signal includes information broadcast from the interference source. Interference caused by the interference source is mitigated from the received signal using at least one of the first pilot signal and the second pilot signal.
Abstract:
Systems and techniques relating to wireless networking, and target wake time (TWT) scheduling for transmissions employing an Orthogonal Frequency-Division Multiple Access (OFDMA) digital modulation channelization include: receiving a frame at a wireless device, wherein a format of the frame comprises (i) a field indicating a target wake time, (ii) a first subfield having a first value that indicates a digital modulation channelization scheme, and (iii) a second subfield having a second value that indicates a transmission direction; and powering on the wireless device at the target wake time indicated by the field in the frame, wherein the powering on the wireless device enables the wireless device to transmit additional frames via a wireless channel based on (i) the first value set in the first subfield of the frame and (ii) the second value set in the second subfield of the frame.
Abstract:
In a method of operating a communication device that includes at least (i) a first network interface configured to operate according to a first communication protocol and (ii) a second network interface configured to operate according to a second communication protocol, the first communication interface is operated according to the first communication protocol. The first communication protocol defines a periodically repeating set of time intervals. One or more time intervals, from the set of time intervals, that meet a selection criteria are determined. The selection criteria is based on level of interference experienced by the first network interface. During the determined one or more time intervals, operation of the first network interface according to the first communication protocol is suspended, and operation of the second network interface according to the second communication protocol is enabled.
Abstract:
A first plurality of OFDM symbols for a first field of a preamble to be included in a data unit that conforms to a first communication protocol are generated, wherein each OFDM symbol of the first plurality of OFDM symbols corresponds to a first long training sequence that is obtained at least by multiplying a predetermined sequence with a second long training sequence defined by a second communication protocol. A first plurality of modified constellation symbols are generated, including multiplying the first plurality of constellation symbols by the predetermined sequence. A second plurality of OFDM symbols are generated to include the first plurality of modified constellation symbols. The preamble is generated to include the first plurality of OFDM symbols for the first field and the second plurality of OFDM symbols for the second field, and the data unit to include at least the preamble.
Abstract:
A communication device of a client uplink group transmits an enhanced request to send (E-RTS) message to an access point of a wireless local area network, wherein the E-RTS message includes i) a length of a TXOP of the communication device and ii) an indication of a data unit size for an uplink MU-MIMO data unit to be transmitted by the communication device simultaneously with transmissions of other members of the client uplink group. The communication device receives a communication frame from the access point, the communication frame including a prompt to transmit an uplink MU-MIMO data unit having the indicated data unit size. The communication device generates the uplink MU-MIMO data unit having the indicated data unit size, and transmits, in response to the communication frame, the uplink MU-MIMO data unit to the access point during the TXOP simultaneously with transmissions of other members of the client uplink group.
Abstract:
An AP including a MAC module to designate a predetermined time period to communicate with a plurality of client stations associated with the AP via a channel. The MAC module instructs remaining client stations associated with the AP to not transmit data during the predetermined time period. The MAC module receives, during the predetermined time period, data transmitted by the plurality of client stations without sensing the channel, and receives, at a time other than the predetermined time period, data transmitted by the remaining client stations by sensing the channel. An acknowledgment generating module generates acknowledgements in response to receiving data from the plurality of client stations. The MAC module aggregates the acknowledgements in a single aggregated frame, which includes a plurality of sub-frames, each sub-frame including one of the acknowledgements. The MAC module transmits the single aggregated frame to the plurality of client stations during the predetermined time period.
Abstract:
Systems, apparatuses, and techniques relating to wireless local area network devices are described. A described technique includes transmitting a sounding packet to wireless communication devices; receiving, in response to the sounding packet, feedback packets from the wireless communication devices, wherein the feedback packets are indicative of beamforming matrices, the beamforming matrices being derived from received versions of the sounding packet; determining steering matrices based on the beamforming matrices; generating spatially steered data packets for the wireless communication devices based respectively on the steering matrices and data streams intended respectively for the wireless communication devices; and transmitting, within a frame, the spatially steered data packets to the wireless communications devices, wherein the spatially steered data packets concurrently provide the data streams respectively within the frame to the wireless communication devices via different spatial wireless channels.
Abstract:
The present disclosure describes methods and apparatus for enabling spontaneous location determination in a scheduled wireless communication environment. For example embodiments, a first wireless communication device includes a transceiver and a multiple recipient communication system. The transceiver is configured to receive from a second wireless communication device a request to participate in a location determination procedure (LDP) that is to occur at least partially during a communication period that is assigned to a third wireless communication device. The multiple recipient communication system is configured to generate a multiple recipient frame that encapsulates (i) data that is destined for the third wireless communication device and (ii) a response to the request to participate in the LDP. For other example embodiments, a multiple recipient communication system of the second wireless communication device is configured to extract the response to the request to participate in the LDP from the multiple recipient frame.