Abstract:
According to various embodiments, systems and methods are provided that relate to shared access to Storage Area Networks (SAN) devices. In one embodiment, a Storage Area Network (SAN) host is provided, comprising: a server component: a first host bus adapter configured to be connected to a SAN client over a first SAN; a second host bus adapter configured to be connected to a SAN storage device over a second SAN; and wherein the server component is configured to manage a data block on the SAN storage device, receive a storage operation request from the SAN client through the first host bus adapter, and in response to the storage operation request, perform a storage operation on the data block, the storage operation being performed over the second SAN through the second host bus adapter.
Abstract:
A system according to certain aspects may include a secondary storage controller computer configured to: in response to a first instruction to obtain a first secondary copy of a first data set from a secondary storage device(s), the first instruction associated with a first restore operation: instantiate a first restore thread on a processor of the secondary storage controller computer; using the first restore thread, retrieve the first secondary copy from the secondary storage device(s); and forward the retrieved first secondary copy to a primary storage subsystem for storage; and in response to a second instruction to obtain a second secondary copy of a second data set from the secondary storage device(s), the second instruction associated with a second restore operation: using the first restore thread, retrieve the second secondary copy from the secondary storage device(s); and forward the retrieved second secondary copy to the primary storage subsystem for storage.
Abstract:
According to certain aspects, a method can include receiving, in response to an indication that a data storage database is being restored to a second time before a first time such that the data storage database comprises a plurality of first archive file identifiers associated at the second time, a first instruction from a data storage computer, where the first instruction instructs a media agent to stop scheduled secondary storage operations associated with a deduplication database, and where the deduplication database comprises a plurality of second archive file identifiers; determining at least one second archive file identifier in the plurality of second archive file identifiers that does not correlate with any first archive identifier in the plurality of first archive file identifiers; and, for each of the at least one second archive identifier, instructing the deduplication database to prune an entry associated with the respective second archive file identifier.
Abstract:
According to certain aspects, a method can include receiving, in response to an indication that a data storage database is being restored to a second time before a first time such that the data storage database comprises a plurality of first archive file identifiers associated at the second time, a first instruction from a data storage computer, where the first instruction instructs a media agent to stop scheduled secondary storage operations associated with a deduplication database, and where the deduplication database comprises a plurality of second archive file identifiers; determining at least one second archive file identifier in the plurality of second archive file identifiers that does not correlate with any first archive identifier in the plurality of first archive file identifiers; and, for each of the at least one second archive identifier, instructing the deduplication database to prune an entry associated with the respective second archive file identifier.
Abstract:
A system according to certain embodiments associates a signature value corresponding to a data block with one or more data blocks and a reference to the data block to form a signature/data word corresponding to the data block. The system further logically organizes the signature/data words into a plurality of files each comprising at least one signature/data word such that the signature values are embedded in the respective file. The system according to certain embodiments reads a previously stored signature value corresponding to a respective data block for sending from a backup storage system having at least one memory device to a secondary storage system. Based on an indication as to whether the data block is already stored on the secondary storage system, the system reads the data block from the at least one memory device for sending to the secondary storage system if the data block does not exist on the secondary storage system, wherein the signature value and not the data block is read from the at least one memory device if the data block exists on the secondary storage system.
Abstract:
A method and system for reducing storage requirements and speeding up storage operations by reducing the storage of redundant data includes receiving a request that identifies one or more data objects to which to apply a storage operation. For each data object, the storage system determines if the data object contains data that matches another data object to which the storage operation was previously applied. If the data objects do not match, then the storage system performs the storage operation in a usual manner. However, if the data objects do match, then the storage system may avoid performing the storage operation.
Abstract:
A method and system for providing information management of data from hosted services receives information management policies for a hosted account of a hosted service, requests data associated with the hosted account from the hosted service, receives data associated with the hosted account from the hosted service, and provides a preview version of the received data to a computing device. In some examples, the system indexes the received data to associate the received data with a user of an information management system, and/or provides index information related to the received data to the computing device.
Abstract:
An information management system can manage the removal of data block entries in a deduplicated data store using working copies of the data block entries residing in a local data store of a secondary storage computing device. The system can use the working copies to identify data blocks for removal. Once the deduplication database is updated with the changes to the working copies (e.g., using a transaction based update scheme), the system can query the deduplication database for the database entries identified for removal. Once identified, the system can remove the database entries identified for pruning and/or the corresponding deduplication data blocks from secondary storage.
Abstract:
Described in detail herein are systems and methods for managing single instancing data. Using a single instance database and other constructs (e.g. sparse files), data density on archival media (e.g. magnetic tape) is improved, and the number of files per storage operation is reduced. According to one aspect of a method for managing single instancing data, for each storage operation, a chunk folder is created on a storage device that stores single instancing data. The chunk folder contains three files: 1) a file that contains data objects that have been single instanced; 2) a file that contains data objects that have not been eligible for single instancing; and 3) a metadata file used to track the location of data objects within the other files. A second storage operation subsequent to a first storage operation contains references to data objects in the chunk folder created by the first storage operation instead of the data objects themselves.
Abstract:
Described in detail herein are systems and methods for single instancing blocks of data in a data storage system. For example, the data storage system may include multiple computing devices (e.g., client computing devices) that store primary data. The data storage system may also include a secondary storage computing device, a single instance database, and one or more storage devices that store copies of the primary data (e.g., secondary copies, tertiary copies, etc.). The secondary storage computing device receives blocks of data from the computing devices and accesses the single instance database to determine whether the blocks of data are unique (meaning that no instances of the blocks of data are stored on the storage devices). If a block of data is unique, the single instance database stores it on a storage device. If not, the secondary storage computing device can avoid storing the block of data on the storage devices.