Abstract:
The present disclosure relates to a display device, a display substrate, a method and a device for display compensation. The method includes: before displaying an image, performing initial compensation on each of the pixel circuits to obtain an average reference voltage of the plurality of pixel circuits; controlling the display substrate to display an image and performing external compensation on each of the pixel circuits during a display duration of one frame of the image, obtaining a charging voltage on the sensing line of each of the pixel circuits during the external compensation, obtaining a first reference voltage of each of the pixel circuits according to the charging voltage on the sensing line and the average reference voltage, and performing internal compensation on each of the pixel circuits according to the first reference voltage.
Abstract:
A control method for a pixel circuit, a control circuit for a pixel circuit and a display device are provided. A timing sequence of the pixel circuit includes a driving display stage and a non-display stage. The non-display stage includes a reverse bias time period. The control method includes: inputting, in the reverse bias time period, a first control signal to an input end of the pixel circuit to make both the light-emitting element and the driving transistor to be reverse biased.
Abstract:
An organic light-emitting diode array substrate and a manufacturing method thereof and a display device are provided. The OLED array substrate includes a base substrate, a power line and a pixel structure disposed on the base substrate. The power line is disposed under the pixel structure and is at least partially overlapped with the pixel structure; an insulating layer is disposed between the power line and the pixel structure, and a first via hole structure is disposed in the insulating layer; and the power line is connected with a driving transistor in the pixel structure through the first via hole structure.
Abstract:
A blue phase liquid crystal composite material and a liquid crystal display comprising the same, can solve the problem of small Kerr constant of the current blue phase liquid crystal and the liquid crystal display comprising the same. The blue phase liquid crystal composite material of the present disclosure is produced by the photo polymerization of the components comprising: a parent blue phase liquid crystal, a benzyne compound, a chiral compound, a photo-polymerizable monomer, and a photoinitiator. The blue phase liquid crystal composite material of the present disclosure has the advantages of large Kerr constant, low voltage, high contrast, rapid response to electric field, good stability, and the like.
Abstract:
An organic light emitting diode display substrate includes a light emitting unit layer, a first band gap layer and a color conversion layer. The first band gap layer and the color conversion layer are on a light exit path of the light emitting unit layer. The light emitting unit layer includes first, second and third light emitting units periodically arranged on a driving substrate and emitting light of a first color. The color conversion layer converts a part of the light of the first color into light of a second color and a third color. The first band gap layer is between the light emitting unit layer and the color conversion layer. The first band gap layer transmits the light of the first color in a light exit direction, and reflects the light of the second color and the light of the third color.
Abstract:
A display substrate includes a base substrate; and a plurality of light emitting brightness value detectors on the base substrate. Each of the plurality of light emitting brightness value detectors includes a first thin film transistor; a protection layer on a side of the first thin film transistor away from the base substrate; and a photosensor electrically connected to the first thin film transistor and configured to detect alight emitting brightness value. An orthographic projection of the protection layer on the base substrate covers an orthographic projection of at least a channel part of the first thin film transistor on the base substrate.
Abstract:
A display apparatus and a control method are disclosed. The display apparatus includes a plurality of sub-pixels, at least one photosensitive assembly, and a processor. Each photosensitive assembly is configured to detect and output actual luminance value(s) of at least one sub-pixel. The processor is configured to obtain a display compensation map corresponding to a target sub-pixel according to actual luminance values of the target sub-pixel that are acquired respectively in cases where a plurality of preset display data are input to the target sub-pixel, and target luminance values of the target sub-pixel that are obtained respectively in cases where the plurality of preset display data are input to the target sub-pixel.
Abstract:
A transparent display panel includes a base and a plurality of sub-pixels disposed on the base. Each sub-pixel includes a light-emitting unit, and a light transmission portion disposed on at least one side of the light-emitting unit. The light-emitting unit includes at least one Micro-LED and a control circuit connected to the Micro-LED. The control circuit is configured to drive the at least one Micro-LED to emit light. The light transmission portion includes at least one of a transparent insulating portion or an opening.
Abstract:
A method for repairing a display substrate includes detecting whether there is a fault point on signal lines. If a fault point is detected on a signal line, short-circuiting is performed of two sides of the at least one fault point through line portions of two drive power lines respectively located at two sides of the at least one fault point and perpendicular to the signal line where the at least one fault point is located and a line portion of a drive power line located at one side of the at least one fault point and parallel to the signal line where the at least one fault point is located.
Abstract:
A pixel circuit includes a first transistor having a bottom gate and a top gate, a drain supplied with a high-level power-supply voltage, and a source coupled to a light-emitting diode (LED). The bottom gate is provided with a first voltage signal and the source is provided with a second voltage signal in a compensation period during which a present value of a threshold voltage of the first transistor is sensed at the source and a third voltage signal is determined based on the present value of the threshold voltage. The top gate is configured to be provided with the third voltage signal in an emission period to reduce the present value of the threshold voltage.