Abstract:
A power converter is preferably mounted in a vehicle. The converter has a power converting unit including an electrical switching element electrically switched on and off selectively in response to a duty ratio of PWM (pulse-width modulation) signal given to the switching element. The converter further has a controller including a drive unit that generates the PWM signal, in addition to a controlling unit and a limiting unit. The controlling unit controls the duty ratio of the PWM signal such that a voltage inputted to the power converter is converted to a voltage to be outputted depending on the duty ratio. The limiting unit limits at least one of a time change amount of the duty ratio of the PWM signal and a maximum duty ratio of the PWM signal.
Abstract:
A valve device for adjusting the flow volumes of a cooling medium and a heating medium for adjusting the temperature of an electronic device includes: flow paths through which a cooling medium and heating medium are able to flow; and a merging section into which these flow path merge. The merging section has a valve shaft internally and a first channel is formed in the valve shaft. The valve shaft makes the first channel face at least two of the flow paths so as to make at least two flow paths communicate with each other.
Abstract:
In an integrated transformer assembly, a common coil member has a first portion alternately wound, for each one electromagnetic turn, around the first core member and around the second core member. The first portion of the common primary coil member wound around the first core member is magnetically linked to the first magnetic path thereof so as to constitute a first primary coil. The first portion of the common primary coil member wound around the second core member is magnetically linked to the second magnetic path thereof so as to constitute a second primary coil. The first and second primary coils are connected in series. A secondary coil member has first and second secondary coils. The first and second secondary coils are arranged to be magnetically linked to the first and second primary coils of the common primary coil member, respectively.
Abstract:
The control apparatus for controlling a voltage transforming apparatus having a transformer, power switching elements disposed in a primary side, and synchronous-rectifying switching elements disposed in a secondary side includes a judging circuit making a judgment as to whether or not an output current of the voltage transforming apparatus is smaller than a specified current on the basis of a primary-side current of the transformer and an inhibition circuit inhibiting the synchronous-rectifying switching elements from performing their synchronous-rectifying control operation when the judging circuit judges that the output current is smaller than the specified current. The judging circuit makes the judgment on the basis of the primary-side current flowing through the primary coil of the transformer immediately before the power switching elements are turned off.
Abstract:
Pressing an electronic device (2) to be tested to contact terminals (132a and 132b) while bringing a heater (112) having equal or close temperature change characteristics to those of the electronic device to be tested by a test pattern, transmitting a test pattern to the electronic device to be tested in this state, and controlling a power consumption of a heater so that total power of a power consumption of the electronic device to be tested by the test pattern and a power consumption of the heater becomes a constant value.
Abstract:
In a DC to DC converter, first and second primary windings are magnetically coupled to a first secondary winding. Third and fourth primary windings are magnetically coupled to a second secondary winding. The first and second primary windings are magnetically coupled to the first secondary winding. The third and fourth primary windings are magnetically coupled to the second secondary winding. The first and third primary windings are coupled in series to form a first coil member. The second and fourth primary windings are coupled in series to form a second coil member. One end of the first coil member is coupled to the first positive power line. A first switching element is coupled between the first negative power line and the other end of the first coil member. A first capacitor is coupled between the first negative terminal and one end of the second coil member.
Abstract:
A pusher 200 that pushes a semiconductor device under test 300 against a test socket 500 in a semiconductor test apparatus 20 is provided that includes a main body section 210 that is thermally coupled with the thermal source 400 and a plurality of device pushing sections 220, each of which is physically and thermally coupled to the thermal source 400, is displaced toward the test socket 500 by the pushing force of the main body section 210 to contact a surface to be pushed of a semiconductor device under test 300, pushes the semiconductor device under test 300, and transmits heat from the thermal source 400 to the semiconductor device under test 300. Thermal conductivity between the pusher and the semiconductor device under test is enhanced to provide a pusher that can quickly and accurately test a semiconductor device.
Abstract:
A first spring 54 is provided between a support member 51 driven in the Z-axis direction and a heat block 53, and biases the support member 51 and the heat block 53 in the direction of separating them from each other. A second spring 57 is provided between a first pusher 55 for pressing a die 81 of an IC device 8 and a second pusher 56 for pressing a substrate 82 of the IC device 8, and biases the first pusher 55 and the second pusher 56 in the direction of separating them from each other.According to an electronic device handling apparatus having the above configuration, it is possible to respond to changes of kinds of electronic devices, improve surface conformance and uniformly press an electronic device with an accurate load.
Abstract:
A thin film transistor is manufactured by a process including forming an oxide semiconductor channel, patterning the oxide semiconductor channel with a photolithographic process, and exposing the patterned oxide semiconductor channel to an oxygen containing plasma.
Abstract:
A DC-DC converter system is provided to improve switching control operation of a battery charging DC-DC converter (3) in an overheat temperature state without necessitating complication of a control unit (4). The control unit (4) performs output voltage limitation as well as output current limitation when the temperature of the DC-DC converter (3) is in an overheat temperature state in the vicinity of its operation stop temperature. With this capability, the output current and the output voltage can be limited, and therefore overheating of a power switching device (32) of the DC-DC converter (3) can be inhibited. In an alternative embodiment the switching frequency of the power switching device (32) is limited.