摘要:
The preferred embodiment of the present invention provides an improved capacitor design that overcomes many of the limitations of the prior art. The preferred embodiment of the present invention uses germanium to adjust the work function of the storage node. Specifically, the addition of germanium modifies the fermi level of the storage node, moving the fermi level towards the conduction band. This modification of the fermi level reduces the difference in conduction band-edge potentials between the storage node and the counter electrode, thus reducing the maximum electric potential seen across the capacitor. In the preferred embodiment, p-type doped silicon germanium is formed in the trench capacitor adjacent to the capacitor dielectric layer. A barrier layer is then formed over the doped silicon germanium, and the remaining storage node area is filled with n+-type polysilicon. The p-type doped silicon germanium adjusts the workfunction of the capacitor storage node, moving the fermi level toward the conduction band. This minimizes the maximum difference between conduction band-edge potentials of the storage node and the buried plate, which serves as the counter electrode. This has the effect of balancing the electric potential seen across the dielectric for stored high and stored low situations. This reduces the maximum electric potential seen across the capacitor dielectric. This solution improves the reliability of the capacitor, especially those capacitors with relatively thin dielectric layers, without requiring additional circuitry to bias the buried plate, and without increasing power consumption. The preferred embodiment also reduces leakage current through the capacitor dielectric, thus increasing signal retention time.
摘要:
A deep trench capacitor having a modified sidewall geometry within the collar isolation region such that the threshold voltage of the vertical parasitic MOSFET between a buried-strap out-diffusion and a N+ capacitor plate is significantly increased as compared to a conventional arrangement. By forming a concave notch within the sidewalls of the capacitor, the electrical thickness of the gate dielectric is effectively thicker than its actual physical thickness. Thereby, a reduced amount of gate dielectric and dopant is needed for suppression of vertical parasitic MOSFET conduction.
摘要:
A semiconductor device and method of manufacturing thereof are provided. A trench is formed in a semiconductor substrate. A thin oxide liner is preferably formed on surfaces of the trench. A nitride liner is formed in the trench. Charge is trapped in the nitride liner. In a preferred embodiment, the trench is filled with an oxide by an HDP process to increase the amount of charge trapped in the nitride liner. Preferably, the oxide fill is formed directly on the nitride liner.
摘要:
A method of connecting a trench capacitor in a dynamic random access memory (DRAM) cell. First, trenches are formed in a silicon substrate using a masking layer including a pad nitride layer on a pad oxide layer. Trench capacitors are formed in the trenches. A buried strap is formed in each trench on the capacitor. The nitride pad layer is pulled back from the trench openings, exposing the pad oxide layer and any strap material that may have replaced the pad oxide layer around the trenches. The straps and trench sidewalls are doped to form a resistive connection. During a subsequent shallow trench isolation (STI) process, which involves an oxidation step, the exposed strap material on the surface of the silicon surface layer forms oxide unrestrained by pad nitride without stressing the silicon substrate.
摘要:
A 6F2 memory cell comprising a plurality of capacitors each located in a separate trench that is formed in a semiconductor substrate; a plurality of transfer transistors each having a vertical gate dielectric, a gate conductor, and a bitline diffusion, each transistor is located above and electrically connected to a respective trench capacitor; a plurality of dielectric-filled isolation trenches in a striped pattern about said transistors, said isolation trenches are spaced apart by a substantially uniform spacing; a respective wordline electrically contacted to each respective gate conductor, said wordline is in the same direction as the isolation stripes; and a bitline in contact with said bitline diffusion, wherein said bitline diffusions have a width that is defined by said spacing of said isolation trenches.
摘要:
A method for simultaneously forming a line interconnect such as a bitline and a borderless contact to diffusion, e.g. bitline contact, is described. A semiconductor substrate having prepatterned gate stacks thereon is covered with a first dielectric to form a first level and then a second dielectric is deposited which forms a second level. Line interconnect openings are defined in the second level by lithography and etching. Etching is continued down to monocrystalline regions in an array region of the substrate to form borderless contact openings coincident to the line interconnects between the gate stacks. The openings are filled with one or more conductors to form contacts to diffusion, e.g. bitline contacts, which are coincident to the line interconnects, e.g. bitlines.